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On the Role of the Law of Large Numbers

in the Theory of Randomness1
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Abstract—In the first part of this article, we answer Kolmogorov’s question (stated in 1963
in [1]) about exact conditions for the existence of random generators. Kolmogorov theory
of complexity permits of a precise definition of the notion of randomness for an individual
sequence. For infinite sequences, the property of randomness is a binary property, a sequence
can be random or not. For finite sequences, we can solely speak about a continuous property,
a measure of randomness. Is it possible to measure randomness of a sequence t by the extent to
which the law of large numbers is satisfied in all subsequences of t obtained in an “admissible
way”? The case of infinite sequences was studied in [2]. As a measure of randomness (or,
more exactly, of nonrandomness) of a finite sequence, we consider the specific deficiency of
randomness δ (Definition 5). In the second part of this paper, we prove that the function
δ/ ln(1/δ) characterizes the connections between randomness of a finite sequence and the extent
to which the law of large numbers is satisfied.

INTRODUCTION

In 1930-s Andrei Kolmogorov founded probability theory on the base of measure theory. In [1]
he writes: “The set theoretic axioms of the calculus of probability . . . had solved the majority of
formal difficulties in the construction of a mathematical apparatus which is useful for a very large
number of applications of probabilistic methods so successfully that the problem of finding the basis
of real applications of the results of the mathematical theory of probability became of secondary
importance to many investigators.”

However, Kolmogorov himself regarded the question about the basis as a principal one. In 1962,
during his visit to India, he began to develop a new approach to it,2 the so-called theory of
descriptive complexity. Now the research area initiated by Kolmogorov has grown into a rich
theory, which has important connections not only with probability theory but also with theory of
algorithms, theory of coding, theory of matroids, and other fields of mathematics.

As for practical applications, the main results are to appear in future. To get them, it is
required to take into account not only the descriptive complexity of a program but also an amount of
resources used by it. In many cases, this task is connected with unsolved problems of computational
complexity theory.

Consider a sequence of independent trials with two equiprobable outcomes, 0 and 1. The simplest
and at the same time the most significant condition of randomness for a sequence of outcomes is an
approximate equality of the number of zeros and the number of ones. Obviously, this requirement
alone is not sufficient (for instance, the sequence 0101010101 . . . does not seem to be random).
But if this condition holds for all subsequences obtained from the original one with the help of

1 Supported in part by the Russian Foundation for Basic Research, project nos. 01-01-00505, 02-01-10904,
and 02-01-22001, and the Council on Grants for Scientific Schools.

2 The first publication appeared in 1963, see [1].
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“admissible” place-selection rules, then such a sequence can be considered as a random generator.
Surely, the notion of an admissible rule should be made mathematically precise.3

Is the mentioned frequency criterion universal? A number of known facts about infinite sequences
would rather be an evidence of the opposite. For example (see [3]),

(i) there exists a set S of measure 0 that consists of infinite binary sequences, and for any countable
family R of admissible place-selection rules there exists s ∈ S such that the law of large numbers
is satisfied in all infinite subsequences selected from s by rules belonging to R.

The construction of the set S and its property to be of measure 0 are effective, hence all its elements
are intuitively nonrandom.

Kolmogorov stressed the importance of the analysis not only of limit regularities of infinite
sequences but of finite sequences too. All results of our paper lie in the finite field. An analog of (i)
for finite sequences would be the following:

(ii) Assume that L is a natural number. There exists a set S of finite sequences of length L such that
the cardinality of S is small enough compared with 2L and, for any not too large family R of
admissible place-selection rules, there exists s ∈ S such that the law of large numbers is satisfied
precisely enough in all not too short subsequences selected from s by rules belonging to R.

Surely, the last statement should be made more precise. What is “small enough,” “not too large,”
“precisely enough,” “not too short”? Remarkably, there is a natural precise meaning of these
expressions such that the negation of (ii) is true. Thus, it is possible to establish a positive
connection between the notions of frequency and universal randomness (Theorem 4).

1. ANALYSIS OF KOLMOGOROV’S ARTICLE “ON TABLES OF RANDOM NUMBERS”

1.1. Philosophical Motivation

As Kolmogorov wrote in [1], for a long time he thought that

1. “The frequency concept based on the notion of limiting frequency as the number of trials in-
creases to infinity does not contribute anything to substantiate the applicability of results of
probability theory to real practical problems, where we always deal with a finite number of
trials”;

2. “The frequency concept applied to a large but finite number of trials does not admit a rigorous
formal exposition within the framework of pure mathematics.”

Kolmogorov’s opinion on the first statement had not changed (as he said in [1]).4 As for the
second statement, Kolmogorov came to the conclusion that, using the frequency conception of
randomness and the refined notion of the complexity of a program, it is possible to formulate purely
mathematical conditions under which probability theory can be applied to practice. He wrote that
an exact definition of the complexity of a program would be given in another paper, but in [1] the
fact that the number of simple objects cannot be very large was only used. Later, Kolmogorov
referred to this approach as the combinatorial one (see [4]). Definitions that correspond to the
algorithmical approach were given by Kolmogorov in 1965 (see [4]). The results of [1] have natural
algorithmical analogs, and we formulate and prove them. This parallel between the two approaches
3 An example of an admissible rule is “to select all digits at even places.” An example of a nonadmissible

rule is “to select the digits at places such that the original sequence contains zeros at them.”
4 Though, in other papers, Kolmogorov emphasized that researches on infinite sequences are of great heuris-

tic significance.
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can be extended widely. Therefore, in our paper, most of the theorems are formulated in two
variants, combinatorial and algorithmical, and are numbered in parallel (numbers of algorithmical
theorems have the prime).

Kolmogorov considered a finite binary sequence to be a table of random numbers (a random
generator) if the frequencies of zeros and ones are close to 1/2 in all long enough subsequences
obtained by not too complex place-selection rules.

The mathematical purpose of [1] was to estimate how large the complexity of place-selection
rules can be to still ensure that at least one random generator exists.

1.2. Definitions

In [1], Kolmogorov defined the notion of a (nonmonotonic) place-selection rule on a finite binary
sequence t.

An informal description is as follows. Assume that we have a sequence of cards of the same
length as a given sequence t. The digits of the sequence t are written on the face of the cards, the
back is the same for all cards. In the beginning, cards lie face down in the order of digits in t.
A rule decides what card should be turned over and (before turning over) whether it should be
included in the subsequence under construction. To make the next decision, the rule takes into
account digits on the cards that have already been turned over. The selected digits are arranged
in subsequence according to the order of selecting, not the order of the original sequence. Here is
the formal definition.

Definition 1. A (place-selection) rule on sequences of length L is a function r that maps binary
sequences of lengths from 0 to L− 1 to pairs from the set {1, . . . , L} × {“select”, “do not select”},
where the first components of values of the function are always different on any sequence and
on any of its proper extensions. Assume that t is a sequence of length L. For each i from 0
to L, by induction on i we construct a binary sequence si of length i. Put s0 = Λ. To obtain
si+1, we write the π1(r(si))th digit of the sequence t at the end of si. The sequence selected
from t by the rule r is obtained from sL by eventual deleting all digits with numbers i such that
π2(r(si−1)) = “do not select”. (Here π1 and π2 denote the first and second elements of a pair.)

The selected sequence is denoted by r[t].

Sometimes, it is useful to consider more restricted classes of rules. Monotonic rules turn over
the cards sequentially in the original order.5 Nonadaptive rules point out a certain set of cards at
once, and the subsequence consists of digits written on these cards and arranged in the original
order.

Definition 2. Assume that RL is a set of rules on sequences of length L. A sequence t of length
L is called an (n, ε)-random generator with respect to RL if, for every rule r ∈ RL, the selected
subsequence r[t] has the following property:

If the length of r[t] is greater than or equal to n, then the difference between the fraction of
zeros and 1/2 is less than ε.

The absolute value of the difference between 1/2 and the fraction of zeros in the sequence is
called the deviation (of the fraction of zeros).

Let us remark that, for each p ∈ [0, 1], we can consider (n, ε, p)-random generators, where the
fraction of zeros in the selected subsequences are close to not 1/2 but p.

How can we translate words about not too complex place-selection rules into a formal language?

5 Monotonic rules were first considered by Church in 1940.
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Under the combinatorial approach, the complexity of a finite set is the binary logarithm of its
cardinality.

Under the algorithmical approach, we use the entropy of a constructive object. The notion of
entropy6 was defined by Kolmogorov in 1965. Actually, a class of functions was defined such that
any two of them differ by a constant. Kolmogorov hoped that it would be achievable to suggest a
certain “natural” programming language such that the corresponding entropy function is less than
the entropy function of any other “natural” programming language plus 100. Since our results are
equally applicable to any entropy function, formulations of these results may contain a constant C
depending on the choice of a programming language only. We also use the notion of conditional
entropy, which was also introduced by Kolmogorov.

The analogy between the combinatorial and algorithmical approaches is based on the following
two propositions, proved by Kolmogorov.

Proposition 1. The set of objects such that their entropy conditional to a fixed object is less
than m cannot contain more than 2m − 1 elements.

Proposition 2. Assume that a set is enumerated by a program of entropy less than α and the
cardinality of this set is less than 2m. Then the entropy of its elements is less than m+α+2 lbα+C.
(Here and in the sequel, we denote by lb(x) the binary logarithm of x.)

Consider the set of all sequences such that the subsequence selected by a fixed rule has length
and deviation greater than given values. The law of large numbers implies that, if these values
are large enough (in other words, if we speak about long subsequences of large deviation), then
the cardinality of this set is small. However, even if we do not require that the deviation is small,
the cardinality can be small anyway. As an example, consider the following monotonic rule: if the
digits already selected form the beginning of the sequence 0101010101 . . . , then the next digit have
to be selected. If the length of selection is equal to the length of the original sequence and an
arbitrary deviation, the corresponding set contains only two elements.

To overcome this difficulty, we introduce the notion of a normal rule, and we will consider sets
generated by normal rules only.

Definition 3. A rule r on sequences of length L is called normal if r selects subsequences of
the same positive length from all sequences of length L.

For a normal rule r that selects subsequences of length n and for a number ε ∈ [0, 1/2], we
denote by Ar,ε the set of all sequences such that r selects a subsequence with deviation not less
than ε. Such sets are called regular.

Let us introduce the notation, which we will often use:

d(n, ε) � 2nε2 lb e.

The following facts (they will be discussed in detail later) give reasons for this notation. If a normal
rule r selects subsequences of length n, then the cardinality of the regular set Ar,ε depends on L, n,
and ε only. If ε is small enough and n is large enough compared with 1/ε, then |Ar,ε| ≈ 2L−d(n,ε).

There exists an effective operation (we will call it n-normalization) that transforms each rule
into a normal one, the length of selection become equal to n, and selections that had length exactly
n do not change.

Let us describe the procedure of n-normalization of a rule. The new rule operates as the old
one, but with two exceptions. If the old rule has already selected n digits, then the new rule stops
selecting at this moment. If the old rule has already selected k < n digits and only n− k digits are
not selected, then the new rule selects all of them.
6 A comparison of different versions of this notion can be found in [5].
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1.3. Sufficient and Necessary Conditions for Existence of a Random Generator

Theorem 1 (Kolmogorov, 1963). Consider arbitrary numbers L (the length of a sequence),
ε > 0 (the deviation), and n ≥ ε−4 (the length of selected subsequences). For any set of rules
RL, if its complexity is less than

d(n, ε)(1 − ε),

then there exists an (n, ε)-random generator with respect to RL.

Proof. In [1], Kolmogorov just outlined the proof of this theorem; for this reason, we give a
complete proof here.

Obviously, we can assume without loss of generality that ε ≤ 1/2. Consider the uniform distri-
bution on sequences of length L (all digits are independent and are equal to 0 and 1 with probability
1/2). The probability of each sequence is equal to 2−L.

Take a place-selection rule r. By rk, denote the result of k-normalization of r. Since digits keep
to be independent when their order changes, for rk the probability of selecting a given subsequence
of length k is equal to 2−k.

Let us estimate the probability that a sequence t is not an (n, ε)-random generator for the rule r
(i.e., the length of selection is greater than or equal to n, and the deviation is ε or greater). Consider
the least k ≥ n such that the deviation in the beginning of r[t] of length k is not less than ε. It is
clear that

Pr{t is not an (n, ε)-random generator for r}

≤ Pr{the deviation in rn[t] ≥ ε}+ 2
L∑

k=n

Pr
{

the number of zeros in rk[t] =
⌈
k

(
1
2

+ ε

)⌉}

= 2
n∑

j=�n( 1
2
+ε)�

(
n

j

)
2−n + 2

L∑
k=n

(
k

�k(1
2 + ε)


)
2−k.

For j �= k, we use the following inequality arising from the Stirling formula:(
k

j

)
≤ ek·h(j/k)√

2πj(k − j)/k
,

where h(x) = −x lnx − (1 − x) ln(1 − x) is the Shannon entropy function. The denominator of
the bound is not less than

√
2π(1 − 1/k) ≥

√
2π · 15/16 since k ≥ n ≥ ε−4 ≥ 16. The sign of the

derivative of h(x) shows that, for x ≥ 1/2, the function h decreases; therefore, h(j/k) ≤ h(1/2+ε).
Differentiating twice, we can easily show that h(1/2 + ε) ≤ ln 2− 2ε2.

Thus, the upper bound on the probability for the rule r is less than

21−n +
√

8
15π

e−2nε2n+
√

8
15π

2e−2nε2

1− e−2ε2
.

Simple calculations show that the last bound is strictly less than e−2nε2(1−ε) for ε ≤ 1/2 and
n ≥ ε−4 (the inequality 1− e−x ≥ x/

√
e for 0 ≤ x ≤ 1/2 is used).

To estimate the probability that a sequence is not an (n, ε)-random generator for at least one
rule from RL, we multiply it by the number of rules. So the probability that a sequence is not an
(n, ε)-random generator with respect to RL is strictly less than 1; therefore, there exists at least
one (n, ε)-random generator. �
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Remark 1. Kolmogorov’s theorem, as well as our results below, can be generalized to the case
where 0 and 1 have frequencies close to p and 1 − p respectively in all long subsequences selected
by simple rules.

Under the algorithmical approach, we get the following statement.

Theorem 1′. Consider arbitrary numbers L (the length of a sequence), ε > 0 (the deviation),
and n ≥ ε−4 (the length of selected subsequences). Then there exists an (n, ε)-random generator
for the set of rules RL consisting of all rules such that their entropy conditional to L is less than

d(n, ε)(1 − ε).

Proof. Proposition 1 implies that the set of rules with entropy less than d(n, ε)(1− ε) has com-
plexity less than d(n, ε)(1−ε), so the algorithmical theorem trivially follows from the combinatorial
result. �

Theorem 2 (Kolmogorov, 1963). Consider arbitrary numbers L (the length of a sequence),
ε ∈ (0, 1/20) (the deviation), and n ∈ [ε−3, L/2] (the length of selected subsequences). There exists
a set RL of nonadaptive rules such that its complexity is less than

4nε(1 + 5ε)

and there does not exist an (n, ε)-random generator with respect to RL.

Proof. We should construct a set of nonadaptive place-selection rules such that, for each se-
quence t, there is a rule r in this set that selects a long subsequence r[t] of large deviation.

Let
m =

⌊
1
4ε

+
1
2

⌋
, L′ = 2m

⌈
n

2m− 1

⌉
.

It can easily be checked that L′ < L under conditions on ε and n from the theorem assumption.
Our rules will select subsequences just from the first L′ digits of a sequence. Namely, we split

the beginning of length L′ into m segments of equal length L′/m. A rule selects exactly one-half
of digits from one of these segments and all digits from the others. Thus, a rule is determined by
the number of a segment and a subset of {1, . . . , L′/m} consisting of L′/(2m) elements.

Each rule selects a subsequence of length

n′ = (2m− 1)
⌈

n

2m− 1

⌉
≥ n.

Take a sequence t. We prove that there is a rule r such that the deviation in r[t] is greater
than ε. Denote the beginning of the sequence t of length L′ by t′. Let us consider three cases.

1. Assume that there are two segments of t′ such that at least one-half of digits in the first one are
zeros and at least one-half of digits in the second one are ones.
Consider two rules, r1 and r2. To define them, we point out which digits they do not select.
• For r1, all such digits are zeros and lie in the first segment.
• For r2, all such digits are ones and lie in the second segment.

The number of zeros in r1[t] is equal to the number of zeros in t′ minus L′/(2m), and the
number of zeros in r2[t] is equal to the number of zeros in t′. Thus, the numbers of zeros in
these selections differ by L′/(2m); hence, the difference between one of them and n′/2 is not less
than L′/(4m). The deviation in either r1[t] or r2[t] is not less than

L′/(4m)
n′

=
1

2(2m− 1)
≥ ε.
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2. Assume that, in all segments of t′, at least one-half of all digits are zeros.
Then consider a rule that selects only zeros from (for instance) the first segment and all digits
from the others. The number of zeros in the selection is not less than

L′

2m
+ (m− 1)

L′/m

2
=
L′

2
.

The deviation is not less than

L′/2− n′/2
n′

=
2m− (2m− 1)

2(2m − 1)
≥ ε.

3. Finally, assume that, in all segments of t′, at least one-half of digits are zeros.
This case is entirely similar to the previous one (with changing zeros to ones).

Thus, we have proved that there are no (n, ε)-random generators with respect to the constructed
set of rules. Now we should estimate the number of rules. It is equal to

m

(
L′/m

L′/2m

)
≤ m

√
2

πL′/m
2L

′/m.

It remains to note that m
√

2m/πL′ < 1/4 for n ≥ ε−3 and ε < 1/20, and L′/m < 2 + 4nε(1 + 5ε)
for ε < 1/20. �

Theorem 1 gives us a lower bound and Theorem 2 gives an upper bound for the maximal
number τ such that, for each L and each set of rules with complexity less than τ , there is at
least one (n, ε)-random generator of length L. Since d(n, ε) = 2nε2 lb e is far less than 4nε for
small ε, Kolmogorov tried to remove the discrepancy between the power of ε in the bounds. As is
noted in [1], he had not succeeded. In the preface to the translation of [1] into Russian (see [6]),
Kolmogorov reminded the reader that the problem was waiting to be solved.

The lower bound obtained by Kolmogorov turns out to be practically sharp (even for nonadaptive
rules).

Theorem 3. Consider arbitrary numbers L ≥ 2 (the length of a sequence), ε ∈ (0, 1/3) (the
deviation), and n ∈ [2ε−3 lbL,L/2] (the length of selected subsequences). There exists a set RL of
nonadaptive rules such that its complexity is less than

d(n, ε)
1 + ε

1 − n/(L− 1)

and there does not exist an (n, ε)-random generator with respect to RL.

Proof. We prove the existence of such a set of rules using a probabilistic method, as in Theo-
rem 1. But now we consider a probability distribution on rules and show that the probability of
the event “there is an (n, ε)-random generator with respect to a set of rules RL” is less than 1.7

We will look for a required set of rules among nonadaptive rules that select subsequences of
length exactly n; i.e., a rule is determined by an n-element subset of the set 1, . . . , L. The number

of such rules is

(
L

n

)
; we define the uniform distribution on them.

7 There are many examples in mathematics where an implicit construction gives better estimation than
all known explicit constructions. The book [7], pp. 257–261 and 273–280, contains a detailed discus-
sion of Kolmogorov’s proof of a special case of Shannon’s theorem about noise-resistant coding, and the
significance of “noneffectiveness” in reasoning is stressed.
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Take a sequence t of length L. Let us bound from below the probability that t is not an (n, ε)-
random generator with respect to a randomly chosen rule r, i.e., the deviation in r[t] is not less
than ε. We assume that the number of zeros in t is not less than the number of ones (the opposite
case is considered symmetrically).

At first, we assume that the numbers L/2 and n(1/2 + ε) are integers; in the end of the proof,
we explain what should be done in other cases. Since we need a lower bound, it is sufficient to
estimate the probability of the deviation such that the fraction of zeros in a selection exceeds 1/2
by at least ε; obviously, this probability is minimal if t contains the same number of zeros and
ones. Moreover, it is sufficient to estimate the probability of the deviation which is exactly equal
to ε. Thus, we estimate the probability of selecting a subsequence of length n containing exactly
(1/2 + ε)n zeros from a sequence of L/2 zeros and L/2 ones. Evidently, this probability is equal to(

L/2
(1
2 − ε)n

)(
L/2

(1
2 + ε)n

)
(
L

n

)

(we assume that ε < 1/2 and n ≤ L/2).
As in Theorem 1, we use the following inequality arising from the Stirling formula:

ek·h(j/k)√
8j(k − j)/k

≤
(
k

j

)
≤ ek·h(j/k)√

2πj(k − j)/k
.

We find that the probability is not less than

eL( 1
2
h((1−2ε)γ)+ 1

2
h((1+2ε)γ)−h(γ)) ×

√
2π/4√

(1− 4ε2)(1− 4ε2 γ2

(1−γ)2 )(1 − γ)n
,

where γ = n/L.
It can easily be checked that the second factor in this bound is greater than 1/

√
en.

Differentiating twice, we can verify that, for ε ≤ 1/
√

8 and γ ≤ 1/2, we have

1
2
h((1− 2ε)γ) +

1
2
h((1 + 2ε)γ) − h(γ) ≥ − 2γε2

1− γ (1 + 4ε2/3). (1)

Finally, we get that the required probability is greater than e−K , where

K =
2nε2

1− γ (1 + 4ε2/3) +
1
2

(1 + lnn).

Thus, the probability that one rule does not select a subsequence from a given sequence such
that the deviation is not less than ε turns out to be less than (1− e−K). Now let us independently
take N random rules.8 The probability that a fixed sequence t is an (n, ε)-random generator with
respect to this set of rules is less than

(
1− e−K

)N
< e−Ne−K

8 Some of them may coincide.
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(here we use the inequality
(

1− 1
x

)x
< e−1, which is true for all x > 1). Multiplying by the

number of sequences of length L, we get a strict upper bound for the probability that there exists
at least one (n, ε)-random generator with respect to this set of rules, namely,

2Le−Ne−K
= eL ln 2−Ne−K

.

The last expression is not greater than 1 if N =
⌈
eKL ln 2

⌉
< eKL, and the complexity of the set

is not greater than
2nε2

1− n/L(1 + 4ε2/3) lb e+ 2 lbL.

It can easily be checked that

d(n, ε)
1 + ε

1 − n/L >
2nε2

1− n/L(1 + 4ε2/3) lb e+ 2 lbL (2)

for ε < 1/3 and n ≥ 2ε−3 lbL.
Now let us return to our assumption that the numbers L/2 and n(1/2 + ε) are integers. If the

number L is odd, we can make the same reasoning for the beginnings of original sequences of length
L− 1, and in the final formula n/L is replaced by n/(L− 1). The number n(1/2 + ε) can always be
converted into an integer by changing ε to ε′ ≥ ε such that ε′ − ε < 1/n. The theorem assumption
easily implies that, if ε < 1/3, then ε′ < 1/

√
8. Thus, inequality (1) holds if we replace ε by ε′,

and inequality (2) holds if we do not change its left-hand side and replace ε on the right-hand side
by ε′. �

Remark 2. In the proof of Theorem 2, the set RL is polynomially computable, i.e., an algorithm
have been constructed that, given the number of a rule from RL and an argument of the rule,
computes (within polynomial time) the result of applying the rule to the argument. As for the
set RL from Theorem 3, this is likely to be false since the proof is probabilistic.

Open problem. Is it possible to improve Theorem 3 in order to make the set RL polynomially
computable (informally speaking, so that RL would become an explicitly defined set)?

Theorem 3′. Consider a natural L ≥ 2 (the length of a sequence), a rational ε ∈ (0, 1/3) (the
deviation), and a natural n ∈ [2ε−3 lbL,L/2] (the length of selected subsequences). There does not
exist an (n, ε)-random generator with respect to the set RL consisting of all nonadaptive rules such
that their conditional entropy under known L is less than

d(n, ε)
1 + ε

1 − n/L + C.

Proof. By the previous theorem, there is no (n, ε)-random generator of length L with respect

to a certain set of nonadaptive rules of complexity less than d(n, ε)
1 + ε

1 − n/(L− 1)
. Let us show

that, given L, n, and ε, a set of rules with this property can be constructed algorithmically.
Indeed, given a set RL of nonadaptive rules and a sequence t of length L, we can effectively

determine whether t is an (n, ε)-random generator with respect to RL (it is sufficient to apply each
rule from RL to t and to calculate the deviation). Examining each sequence of length L, we can
verify whether there exists an (n, ε)-random generator with respect to RL. Examining all sets of
nonadaptive rules with a given cardinality, we find the required set (if there are several sets with
this property, we take the first set in our enumeration).

Given L, n, and ε, this set can be enumerated by a program whose entropy depends on the
programming language only. Proposition 2 (relativized with respect to L, n, and ε) implies that
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the conditional entropy of each of these rules does not exceed the complexity of the set plus a

constant. If we add rules (all the remaining with entropy less than d(n, ε)
1 + ε

1 − n/(L− 1)
+ C), the

property (nonexistence of an (n, ε)-random generator) cannot be violated. Finally, note that the
difference

d(n, ε)
1 + ε

1 − n/(L− 1)
− d(n, ε) 1 + ε

1 − n/L

is less than 1. �

2. COMPARISON OF UNIVERSAL AND FREQUENCY RANDOMNESS

2.1. Philosophical Motivation

It is traditional in mathematical statistics to use tests in order to clarify ideas of randomness.
Assume that we have a finite sequence of cards (see the paragraph before Definition 1), their faces
down, each containing a binary digit. In this formulation, to each sequence of cards we assign a
certain (unknown to us) sequence of zeros and ones. Informally, nonrandomness (with respect to the
uniform distribution) of this sequence means that it is possible to make a nontrivial prediction about
its behavior. If one offers a sequence and, after the cards are opened, the sequence on them coincides
with the offered one, then this sequence should be considered as maximally nonrandom. If one
offers a set containing a relatively small number of elements and, after the cards are opened, the
sequence on them belongs to the offered set, then this sequence should be considered as nonrandom
too (having a bigger “measure of nonrandomness” for the smaller cardinality of the set). Such sets
are usually called tests.

Practically, sometimes it is convenient to consider tests of a certain special kind. Frequency tests
are especially important. To each rule r selecting a subsequence of length n from any sequence of
length L and to each deviation ε, we assign a set9 (a frequency test) containing sequences t such
that �(t) = L, �(r[t]) = n, and the fraction of zeros in r[t] differs from 1/2 by at least ε. We could
say that the universal concept of randomness is reduced to the frequency one if any test U could be
covered by a small collection of frequency tests F1, . . . , Fm. In this case, it is important that m is
very small compared with the cardinality of U , and the cardinality of each Fi is not much greater
than the cardinality of U . Theorem 4 gives particular estimations of this kind. Theorem 5 shows
that the estimations from Theorem 4 cannot be improved substantially. Theorem 6 implies that
frequency tests Fi cannot be defined with the help of a more restricted (than in Theorem 4) class.

It is worth saying that the combinatorial results from the first part of this article can also be
interpreted as an analysis of the possibility to cover a set U by frequency tests F1, . . . , Fm. But in
this case, as U , we consider the set of all sequences.

Under the combinatorial approach, as in classical probability theory, we cannot precisely de-
fine what is “one (who does not know a sequence) offers a set of small cardinality that contains
this sequence.” Under the algorithmical approach, in place of such a set we take the set of all
sequences of small (compared with their length) entropy. In other words, one (“universal”) test
is studied. An advantage is that we can speak about a complexity measure of an individual se-
quence. A disadvantage is that the universal test is not defined explicitly (it is enumerable but not
decidable).

As in the first part of the article, algorithmical theorems have the numbers of parallel combina-
torial theorems with the prime.

9 In Definition 3, such sets are referred to as regular.
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2.2. The Combinatorial Approach

Definition 4. The deficiency ∆(S) of a set S consisting of binary sequences of a certain length
L is the difference between L and the complexity of the set S, i.e., ∆(S) = L− lb |S|. The specific
deficiency δ(S) is the value δ(S) = ∆(S)/L.

The specific deficiency characterizes a measure of nontriviality of a set if it is used as a test.

Theorem 4. Let δ ∈ (0, e−e8) and consider a natural L ≥ (1/δ)5. Consider sets of binary
sequences of length L. For an arbitrary set S of specific deficiency ≥ δ, there is a family of regular
sets of specific deficiency greater than

δ′ =
δ

ln(1/δ)
(1− β)

that covers S and contains at most Le1/δ
′
sets (as β, we can take

2 ln ln(1/δ)
ln(1/δ)

).

Proof. For a set S of sequences of length L, let us consider the following game. Mathematician
and Nature make L moves in turn. At the ith move, Mathematician places an xi ∈ [0, 1] bet on
a digit 0 or 1, and Nature chooses an element ti ∈ {0, 1} so that, after L moves, the sequence t
would belong to S. At first, the capital of Mathematician is equal to zero; then, at each move, it
increases by the value of the bet if Mathematician have guessed the next digit ti, and decreases
by the same value otherwise. The capital may be negative, and for this reason the game is called
the game “on credit.” Let us show that, for any set S, there is a strategy of Mathematician that
allows him to win not less than ∆(S) ln 2.

Let us introduce some notation. If s is an extension of a sequence t (in other words, t is a prefix
of s), we write s � t (it is possible that s = t). The set St = {s | s � t, s ∈ S} is the set of
all extensions of t belonging to S. Let t1:i be the beginning of a sequence t obtained before the
(i+ 1)st move.

Mathematician’s strategy is as follows. If |St1:i0| ≥ |St1:i1| (i.e., if most of the extensions of t1:i

belonging to S begin with 0), then Mathematician bets on 0; otherwise, he bets on 1. The value x

of the bet is determined by the equation
1 + x

2
=
|St1:i0|
|St1:i |

or
1 + x

2
=
|St1:i1|
|St1:i |

respectively.

Let us show that the value Ki + ∆i ln 2 does not decrease for this strategy, where Ki is Mathe-
matician’s capital after the ith move and ∆i = ∆(St1:i)− i is the deficiency of the set of all possible
finishes of the game. This implies that Mathematician’s gain KL is not less than ∆(S) ln 2, since
at the beginning K0 = 0, ∆0 = ∆(S), and after the last move ∆(St1:L)− L = L− lb 1− L = 0.

We should prove that the sum (Ki+1−Ki) + (∆i+1−∆i) ln 2 is always nonnegative. The second

term is equal to − ln 2− ln
|St1:(i+1)

|
|St1:i |

. The first term is equal to the bet x or (−x). In the first case,

we have x − ln 2− ln
1 + x

2
= x− ln(1 + x) ≥ 0 (by the well-known inequality for the logarithm).

In the second case, we have −x− ln 2 − ln
1− x

2
= −x− ln(1 − x) ≥ 0. Thus, we obtain that the

gain is not less than δL ln 2, where δ = δ(S).
We will use this strategy for constructing a set of rules that give a cover of S by regular sets.

The idea is the following: given S, we construct regular sets of large deficiency that cover “almost
all” of S; for the rest of S, we repeat the same construction. We estimate the number of covered
sequences using our winning strategy (it will be slightly modified in order to decrease the number
of possible bet values).

First of all, we modify the strategy. To this end, let us take the number B nearest to ln(1/δ)

from above such that M =
B

δ ln 2
is natural, and round off all bet values to the nearest number of
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the form k/M (where k ∈ N). Note that the decrease in the gain at each move is less than 1/M ,
and the modified strategy wins more than δL ln 2(1 − 1/B). Now nonzero bets can run over M
different values only.

To each set of admissible values of bets (subset of {1/M, 2/M, . . . , 1}) and to each binary digit
(0 or 1), assign the following rule. It reads a sequence digit by digit and applies the winning strategy
to the part read previously; the next digit is selected to the subsequence if the strategy prescibes
to bet this value on this digit. The number of rules of this form is not greater than 2 · 2M . For
each n, apply n-normalization to each rule. After that, the number of normal rules is not greater
than 2L · 2B/(δ ln 2) < 2L · 21+lb(1/δ)/δ = 4L(1/δ)1/δ .

For almost all sequences t ∈ S, we will find a normal rule r of the form described above and a
number ε such that the regular set Ar,ε contains t and the deficiency of Ar,ε is large enough. The
inequality ε1 > ε2 implies that Ar,ε1 ⊆ Ar,ε2; therefore, for each r, we can take the least ε such that
the deficiency of Ar,ε is large enough. Most part of S turns out to be covered by not more than
4L(1/δ)1/δ sets, and for a small exceptional set S̃ ⊂ S we repeat the whole construction; a recursive
calculation shows that the total number of sets in the cover is not too large.

Let us take a sequence t0 ∈ S. The strategy wins more than δL ln 2(1 − 1/B) on it, betting on
zero and on one. If we allow betting on 0 or on 1 only, then at least in one case the gain is greater

than
1
2
δL ln 2(1− 1

B
). Let us choose the corresponding digit (assume that it is 0) and in the sequel

consider bets on 0 only (we will ignore bets on 1).
For any beginning t of a sequence from S, denote by di(t) the difference between the numbers

of wins and losses on bets of value i/M (bets on 0 only) and denote by ni(t) the total number of
such bets (when Nature moves in accordance with t).

The gain on t0 is equal to
M∑
i=1

i

M
di(t0).

Let us exclude all bets (of value i/M) such that ni(t0) ≤ L/M2. The gain on one move is not
greater than the value of the bet, that is, 1; hence, after the bets have excluded, the total gain

decreases by at most 1 · L
M2
·M = L/M = δL ln 2/B. Thus,

∑
i: ni(t0)>

L
M2

i

M
di(t0) >

1
2
δL ln 2

(
1− 3

B

)
. (3)

For each t1 ∈ S, consider the set

S(t1, i) =
{

t ∈ S
∣∣∣ ni(t) = ni(t1), di(t) ≤

i

M
ni(t1)

(
1− 1

B

)}
.

Claim 1. If ni(t1) > L/M2, then |S(t1, i)| < |S|e−L/2B2M4
.

We will prove this claim later, and now we continue the proof of the theorem.
Put

S̃ =
⋃
t1∈S

i: ni(t1)>L/M2

S(t1, i).

Let us note that a set S(t1, i) is uniquely determined by two parameters, i and ni(t1), which can
range over M and L different value respectively. Therefore,

|S̃| < LM |S|e−L/2B2M4
.
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Let us consider two cases:

1. t0 ∈ S̃;
2. t0 /∈ S̃.

In the first case, t0 belongs to the exceptional set, and we do not try to cover this set by regular
sets of the form described above. Instead, we repeat our construction for the set S̃ with the same
bound on δ (the deficiency of S̃ is greater than the deficiency of S). As a result, we obtain the
following chain of decreasing sets: S(0) = S, S(1) = S̃(0), S(2) = S̃(1), . . . . This chain is finite
since, at each step, the cardinality (a natural number) of the corresponding set becomes at least
eL/2B

2M4
/LM times as small. The length of the chain is not greater than

1 +
ln |S|

ln(eL/2B2M4/LM)
< 1 +

L ln 2
L/2B2M4 − lnL− lnM

.

Using bounds for L and δ from the theorem assumption, we obtain that the chain length is less

than
25 ln6(1/δ)

δ4
. For each element of the chain, the number of rules is not greater than 4L(1/δ)1/δ ;

therefore, the total number of rules is less than Le1/δ
′
.

Consider the second case now. Let us construct a regular set covering t0, that is, point out a
rule (a collection of bets values) and a deviation.

For brevity, put ni = ni(t0) and di = di(t0). The condition t0 /∈ S̃ implies in particular that,

if ni > L/M2, then t0 /∈ S(t0, i), or, equivalently, di >
i

M
ni(1−

1
B

). From this and by (3), we get

∑
i: ni>

L
M2

d2
i

ni
>

∑
i: ni>

L
M2

di
i

M

(
1− 1

B

)
>

1
2
δL ln 2

(
1− 4

B

)
.

Consider a regular set that is determined by a collection of bets J ⊆ {i | ni > L/M2}, the length

of a selected subsequence n =
∑
i∈J

ni, and the deviation ε =
1

2n
∑
i∈J

di. This set contains t0 (recall

that di is the difference between the numbers of wins and losses). By the Chernoff bound, we have
that the specific deficiency of the set in not less than 2nε2 lb e/L. The proof will be completed if

we show that this value is greater than
δ

ln(1/δ)
(1− β) for some J .

Assume the contrary, i.e., for any J ⊆ {i | ni > L/M2}, we have(∑
i∈J

di

)2

(∑
i∈J

ni

)
2L ln 2

≤ δ

ln(1/δ)
(1− β).

In other notation, (∑
i∈J

di
ni
ni

)2

≤ Z
(∑
i∈J

ni

)
,

where Z =
δ

ln(1/δ)
(1− β)2L ln 2.

Claim 2. If
∑
i∈J

di
ni
ni ≤

√
Z
∑
i∈J

ni for all J , then

∑ d2
i

ni
≤ Z +

Z

4

(
ln
∑

ni − lnZ
)
,
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where the sum is taken over all i such that ni > L/M2.

This claim will also be proved later.
Now, if we recall the bound for

∑
d2
i /ni obtained previously, we get

1
2
δL ln 2

(
1− 4

B

)
< Z +

Z

4
(lnL− lnZ)

(here we take into account that
∑
ni ≤ L). After simple transformations, we get(

1− 4
ln(1/δ)

)
< (1− β)

(
1 +

ln ln(1/δ) + 4− ln ln 4− ln(1− β)
ln(1/δ)

)
,

which is wrong for β =
2 ln ln(1/δ)

ln(1/δ)
and δ < e−e8 . �

It remains to prove the two claims used.

Proof of Claim 2. We should obtain an estimation of the sum
∑ d2

i

ni
=
∑(di

ni

)2

ni from a

given estimation of the sum
∑ di
ni
ni. Let us change these sums to integrals of step functions. Since

the order of indices i is not important, assume that i = 1, . . . , I and
di
ni

monotonically nonincreases.

Consider a nonincreasing function f on the half-open interval [0,
I∑

i=1
ni) defined by the equality

f(x) =
dk
nk

if Nk−1 ≤ x < Nk,

where Nk =
k∑

i=1
ni. Obviously, these sums over i = 1, . . . , k are equal to integrals from 0 to Nk of

f and f2 respectively. By the claim condition, for every k we have

Nk∫
0

f(x) dx ≤
√
ZNk.

Using the convexity of the square root, we can extend this inequality to arbitrary values of the
upper limit of the integral. Indeed, for Nk ≤ u ≤ Nk+1, we get

u∫
0

f(x) dx =
Nk∫
0

f(x) dx+
dk+1

nk+1
(u−Nk).

For u = Nk+1, the inequality implies that for all u we have

dk+1

nk+1
(u−Nk) ≤

√ZNk+1 −
Nk∫
0

f(x) dx

 u−Nk

Nk+1 −Nk
.

Therefore,

u∫
0

f(x) dx ≤
√
ZNk+1

u−Nk

Nk+1 −Nk
+
√
ZNk

(
1− u−Nk

Nk+1 −Nk

)
≤
√
Zu.
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We want to represent the right-hand side as an integral of a bounded nonincreasing function g.
Note that f(x) ≤ 1 since dk ≤ nk. Put

g(x) =


1 if x < Z,√
Z

2
√
x

if x ≥ Z.

Let us remark that, if u ≥ Z, then
u∫
0
g(x) dx =

√
Zu. Hence,

u∫
0

(g(x) − f(x)) dx ≥ 0

for all u ∈ [0, NI ]. It remains to show that
u∫
0

(g2(x)− f2(x)) dx ≥ 0.

The second mean-value theorem for integrals asserts that, for any integrable function ψ(x) and
any nonnegative nonincreasing function ϕ(x), there exists a point ξ ∈ [a, b] such that

b∫
a

ϕ(x)ψ(x) dx = ϕ(a)
ξ∫

a

ψ(x) dx.

The functions ψ(x) = g(x)−f(x) and ϕ(x) = g(x)+f(x) satisfy conditions of this theorem; hence,

u∫
0

(g2(x)− f2(x)) dx = (g(0) + f(0))
ξ∫

0

(g(x)− f(x)) dx ≥ 0.

Let us verify that Z < NI . In fact,

∑
ni =

∑ n2
i

ni
≥
∑ d2

i

ni
>

1
2
δL ln 2(1− 4

B
) >

δ

ln(1/δ)
(1− β)2L ln 2 = Z

(recall that δ is small).
Thus, ∑

i

d2
i

ni
=

NI∫
0

f2(x) dx ≤
NI∫
0

g2(x) dx = Z +
Z

4
(lnNI − lnZ). �

Proof of Claim 1. Consider the set S(t1, i). Note that the condition

di(t) ≤
i

M
ni(t1)

(
1− 1

B

)
may be rewritten in the following form:(

1
2

+
i

2M

)
ni −

ini
2BM

≥ ni + di
2

.

To estimate the cardinality of S(t1, i), we introduce two auxiliary probability measures, PrS
and Pr. The measure PrS is the uniform distribution on S, that is, PrS(X) = |X ∩ S|/|S|. The

measure Pr is the Bernoulli measure with the probability of zero equal to
1
2

+
i

2M
.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 39 No. 1 2003



134 MUCHNIK, SEMENOV

Let Xν,σ be the set of all sequences of length ν that contain at most σ zeros. Assume that
t ∈ {0, 1}≤L. Let zi(t) be the number of wins on bets on zero of value i/M when Nature moves
in accordance with the sequence t and Mathematician moves in accordance with the (modified)
strategy. Note that zi(t) = (ni(t) + di(t))/2. Assuming that Ss �= ∅, let us prove the inequality10

∀ν∀σ PrS{ni(t) = ν + ni(s), zi(t) ≤ σ + zi(s) | t � s} ≤ Pr(Xν,σ)

by descent induction on the length of s from L to 0.
Assume that ν < 0 or σ < 0; then the probability on the left-hand side equals 0. Now assume

that ν ≥ 0 and σ ≥ 0.
Let �(s) = L, then

if ν = 0, then the probability on the right-hand side equals 1;
if ν �= 0, then the probability on the left-hand side equals 0.

The induction base is proved.
To prove the induction step, let us consider two cases. For brevity, here we use the following

notation:

P (s, ν, σ) = PrS{ni(t) = ν + ni(s), zi(t) ≤ σ + zi(s) | t � s},

PrS{t � s0 | t � s} =
|Ss0|
|Ss|

=
1 + x

2
.

1. In position s, the strategy does not place a bet of value i/M on zero. Then

P (s, ν, σ) =
1 + x

2
P (s0, ν, σ) +

1− x
2

P (s1, ν, σ)

≤
(

1 + x

2
+

1− x
2

)
Pr(Xν,σ) = Pr(Xν,σ).

2. In position s, the strategy places a bet of value i/M on zero. Recall that in this case i/M ≤ x.
Then

P (s, ν, σ) =
1 + x

2
P (s0, ν − 1, σ − 1) +

1− x
2

P (s1, ν − 1, σ)

≤ 1 + x

2
Pr(Xν−1,σ−1) +

1− x
2

Pr(Xν−1,σ).

On the other hand,

Pr(Xν,σ) =
1 + i/M

2
Pr(Xν−1,σ−1) +

1− i/M
2

Pr(Xν−1,σ).

It is obvious that Pr(Xν−1,σ) ≥ Pr(Xν−1,σ−1). So, reducing the weight of the lesser term (from
(1 +x)/2 to (1 + i/M)/2) and appropriately enlarging the weight of the greater one, we enlarge
the sum. Hence we get the desired inequality P (s, ν, σ) ≤ Pr(Xν,σ).

Thus,
|S(t1, i)|/|S| = PrS{ni(t) = ν, zi(t) ≤ σ} ≤ Pr(Xν,σ),

where σ = (1/2 + i/2M)ν − iν/2BM and ν = ni(t1).
10 Here PrS{U | V } denotes the probability that U is true under the condition that V is true, that is,

PrS({t | U, V })/PrS({t | V }).
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It follows from the Chernoff bound that

Pr(Xν,σ) ≤ e−2( i
2BM

)2ν .

Taking into account that i ≥ 1 and ni(t1) > L/M2, we obtain the final bound

|S(t1, i)| < |S|e−
L

2B2M4 . �

Remark 3. It can be proved that in Theorem 4 (in contrast to Theorem 3) we cannot restrict
ourselves to families of regular sets with the same deviation ε.

Remark 4. The proof of Theorem 4 uses regular sets generated by monotonic rules only. Theo-
rem 6 shows that using regular sets generated by nonadaptive rules is not sufficient.

Theorem 4 gives a bound for the specific deficiency of covering regular sets. The following
theorem shows that this bound is sharp.

Theorem 5. Let δ ∈ (0, e−e8) and consider a natural L ≥ (1/δ)5. Consider sets of binary
sequences of length L. There exists a set S of specific deficiency greater than δ that cannot be
covered by less than eLδ

4/70 regular sets of specific deficiency not less than

2δ
ln(1/δ)

.

Proof. Let

m =
⌊(

2− 4
√
δ ln(1/δ)

)/
δ ln 2

⌋
, k = �L/2m� .

A sequence of length L is represented as a concatenation of m pairs of sequences having length k
and a “‘remainder” having length L− 2km < 2m. In each pair, one sequence corresponds (a more
precise explanation will be given later) to the digit 0, and the other corresponds to the digit 1;
for the ith pair, these sequences are called the ith 0- and 1-segments of an original sequence t of
length L and are denoted by ti,0 and ti,1 respectively.

For each i from 1 to m, let us define sets Si,0 and Si,1 of length-k sequences. Let pi =
1
2

+

d
1√
i lnm

. The set Si,0 consists of sequences with not less than k(pi − 1/m) zeros and Si,1 consists

of sequences with not less than k(pi − 1/m) ones. The set S contains all sequences t such that
ti,0 ∈ Si,0 and ti,1 ∈ Si,1 for each i.

First let us estimate the specific deficiency of S. The cardinality of S is equal to the product of
|Si,0| · |Si,1| over all i multiplied by 2L−2km, the number of possible “remainders.” Therefore, from
the Chernoff bound (for the uniform distribution on all binary sequences) we obtain

|S| ≤ 2L−2km
m∏
i=1

2ke
−2k

(
1√

i ln m
− 1

m

)2
2

= 2L−2km22kme
−4k

m∑
i=1

(
1√

i lnm
− 1

m

)2

.

Since 1−
√
i lnm
m

≥ 1−
√

lnm
m

and
m∑
i=1

1
i
> lnm, we have

m∑
i=1

(
1√
i lnm

− 1
m

)2

=
m∑
i=1

1
i lnm

(
1−
√
i lnm
m

)2

>
lnm
lnm

1−
√

lnm
m

2

.
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Hence we get |S| < 2Le
−4k

(
1−2
√

ln m
m

)
, and so the specific deficiency of S is greater than

4k
L ln 2

1− 2

√
lnm
m

 >

(
2

m ln 2
− 4
L ln 2

)1− 2

√
lnm
m

 > δ.

Take a cover of S consisting of less than eLδ
4/70 regular sets. Let us prove that at least one set

in this cover has specific deficiency less than
2δ

ln(1/δ)
.

The plan of the proof is as follows. Consider the set of rules that generate regular sets from the
cover. For each rule r, the sequence is called r-typical if the deviation in the selected subsequence
is small compared with its length. We will prove that the set S contains a sequence that is typical
for all rules under consideration (since the probability with respect to a certain distribution of the
opposite event is strictly less than 1). Therefore, one set from the cover (namely, the set containing
this typical sequence) has small deficiency.

Let t be a sequence of length L and r be a normal place-selection rule. To define r-typicalness,
assume that the number of ones in the subsequence r[t] is greater than the number of zeros; in the
opposite case, it is necessary to change all ones to zeros and vice versa in the definition below.

Denote by n the length of a selected subsequence r[t], denote by ni the number of digits selected
by r from the ith 1-segment of the sequence, and denote by n′ the total number of digits selected

by r from 0-segments of the sequence (i.e., n ≥
m∑
i=1

ni + n′ and ni ≤ k). The sequence t is called

r-typical if the following conditions hold:

• The number of ones selected from the ith 1-segment is less than nipi +
√
kni
m3

;

• Either n′ < k/m or, among digits selected from 0-segments, the number of ones is less than the
number of zeros.

Let us introduce an auxiliary probabilistic measure on sequences of length L: digits are inde-
pendent, digits from the ith 0-segment (1-segment) are equal to zero (or, respectively, to one) with
probability pi, and digits from the “‘remainder” are equal to zero with probability 1/2.

Let us estimate the probability (with respect to this measure) that a sequence t (of length L)
selected by guess does not belong to the set S:

Pr{t /∈ S} ≤
m∑
i=1

(Pr{ti,0 /∈ Si,0}+ Pr{ti,1 /∈ Si,1}) ≤ 2me−2k( 1
m)2

= e
− 2k

m2

(
1−m2 ln 2m

2k

)
.

Now let us fix a place-selection rule r and estimate the probability that a sequence t (of length L)
selected by guess is not r-typical (as in the definition of r-typicalness, we assume that the number
of ones in the subsequence r[t] is greater than the number of zeros; the opposite case is considered
similarly).

First, let us estimate the probability that, at least for one i from the ith 1-segment, at least

nipi +
√
kni
m3

ones are selected. It is not greater than the sum of probabilities of the corresponding
events for each i. For a fixed ni > 0, using the Chernoff bound, we get

e
−2 1

ni

(√
kni
m3

)2

.
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Since ni is not given, we sum up the probabilities over all possible values of ni ≤ k. The final upper
bound is

mke−
2k
m3 .

Now let us estimate the probability that, from 0-segments, n′ ≥ k/m digits are selected and
the number of ones among these digits is not less than the number of zeros. For a fixed n′, the
probability does not exceed

e−2n′(pm− 1
2)2

≤ e−2 k
m

1
m ln m .

Summing up over all possible n′ ≤ mk, we finally get the bound

mke−
2k

m2 ln m .

We see that the bound on the probability of violating the first condition of r-typicalness is
much greater than the bound on that of violating the second condition. Taking into account the
symmetric case (change 0 to 1), we obtain that, for a sequence selected by guess, the probability of
being non-r-typical is less than 2mke−

L
m4 +1 ≤ e−

L
m4 +lnL+1. Multiplying by the number of regular

sets from the cover of S, we find that the probability of “being not typical for at least one rule”
is considerably less than 1 when δ < e−e8 and L ≥ (1/δ)5. If we add a small probability that a
sequence does not belong to S, this bound remains to be less than 1. Thus, there exists a sequence
t ∈ S that is typical for all rules from the cover.

Take the set A from the cover that contains this t and let r be the corresponding rule. Let us
majorize a possible value of the specific deficiency of A, using the r-typicalness of t. Consider two
cases.

1. n ≤ 8k/(lnm ln 2). The deficiency of A is not less than n; therefore, the specific deficiency is
not less than

n

L
≤ 4
m lnm ln 2

.

2. n > 8k/(lnm ln 2). Let us majorize the difference between the number of ones in the subse-
quence r[t] and the half of the subsequence length (the argument for zeros is parallel). This
difference consists of the corresponding differences for 1-segments, for 0-segments, and for the
“remainder.” We bound the difference for the “‘remainder” by the half of its length, which is
less than m. The typicalness implies that, for 0-segments, either the total length of the selected
subsequence (and hence the doubled difference) is less than k/m, or the number of zeros in
the subsequence is greater than the number of ones. For the same reason, on 1-segments, the
difference is less than

m∑
i=1

 ni√
i lnm

+

√
kni
m3

 =
1√
lnm

m∑
i=1

(
ni√
i

)
+

√
k

m3

m∑
i=1

√
ni.

Since the square root is a convex function, we get

m∑
i=1

√
ni ≤ m

√√√√ m∑
i=1

ni/m ≤
√
nm.

On one hand,
m∑
i=1

(
ni/
√
i
)
≤ n. On the other hand, to estimate the sum

m∑
i=1

(
ni/
√
i
)

for n > 4k,

note that, if ni increases by one and ni+1 decrease by one, then the sum will increase. We know
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that ni ≤ k and
∑
ni ≤ n; therefore, increasing the values of the first ni until they attain k, we

obtain
m∑
i=1

(
ni√
i

)
≤

�n/k�∑
i=1

(
k√
i

)
< k · 2

√
n/k = 2

√
nk.

Finally, we obtain that the difference between the number of ones in r[t] and n/2 is less than

m+
k

2m
+

√
nk

m
+

n√
lnm

<
n√
lnm

(
1 +

√
ln3m

m

)
if n ≤ 4k,

m+
k

2m
+

√
nk

m
+

2
√
nk√

lnm
<

2
√
nk√

lnm

(
1 +

√
lnm
m

)
if n > 4k.

Since the regular set A contains the sequence t, its specific deficiency is not greater than

1
L

2
n ln 2

n2

lnm
(1 + o(1)) ≤ 4

m lnm ln 2
(1 + o(1)) if n ≤ 4k,

1
L

2
n ln 2

4nk
lnm

(1 + o(1)) ≤ 4
m lnm ln 2

(1 + o(1)) if n > 4k.

The lower bounds for the binomial coefficients,(
n

j

)
≥ en·h(j/n)√

8j(n − j)/n

and for the Shannon entropy function (if ε ≤ 1/
√

12),

h

(
1
2

+ ε

)
≥ ln 2− 2ε2(1 + ε2),

show that the terms o(1) in the previous expressions are less than 1/ ln(1/δ). On the other hand,
lnm > ln(1/δ)(1 + 1.05/ ln(1/δ)).

Thus, in all cases, at least one set from the cover of S has specific deficiency less than

2δ
ln(1/δ)

. �

Theorem 6. For any σ > 0 and any L ≥ 12 + 6 lb(1/σ), there exists a set of binary sequences
of length L and of specific deficiency ≥ 1/3 that cannot be covered by less than 2σL/2 nonadaptive
regular sets of specific deficiency ≥ σ.

Proof. Consider an ordered collection of 2�2L/3	 sequences of length L (possibly, with repeti-
tions). The specific deficiency of the set of these sequences (without repetitions) is not less than 1/3.
Therefore, to prove the theorem, it is sufficient to find a collection that cannot be covered by any
family consisting of less than 2σL/2 nonadaptive regular sets of specific deficiency not less than σ
(we may assume that σ ≤ 1).

The number of collections consisting of 2�2L/3	 sequences is equal to

(
2L
)2�2L/3�

.

Let us estimate the number of collections that cannot be covered by families of the kind described.
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Take any of such families, AL. The number of collections that are covered by AL is equal to∣∣∣⋃AL

∣∣∣2�2L/3�

.

The definition of the family AL implies that∣∣∣⋃AL

∣∣∣ ≤ |AL|max{|A| : A ∈ AL} < 2σL/2 · 2L−σL = 2L−σL/2.

Thus, the number of collections covered by one family is less than

2(L−σL/2)·2�2L/3�
.

The family AL corresponds to a family of nonadaptive rules RL. Choosing various deviation,
we get different (generally speaking) families of regular sets corresponding to the same set of rules.
However, as the deviation increases, the class of covered collections can only decrease. Thus, one
family of < 2σL/2 rules can cover less than

2(L−σL/2)·2�2L/3�

collections.
Note that, in essence, a nonadaptive rule is a subset of {1, . . . , L}; hence, the number of non-

adaptive rules is equal to 2L. The number of families consisting of less than 2σL/2 nonadaptive
rules is less than

2L·2
σL/2

.

Therefore, such families can cover less than

2L·2
σL/2 · 2(L−σL/2)·2�2L/3�

=
(
2L
)2σL/2+(1−σ

2 )2�2L/3�

collections. To show that there are collections that are not covered, it is sufficient to verify that(
2L
)2σL/2+(1−σ

2 )2�2L/3�

≤
(
2L
)2�2L/3�

.

This inequality arises from the inequality L(2/3− σ/2) ≥ 2− lbσ, which is provided by σ ≤ 1 and
L ≥ 12 + 6 lb(1/σ). �

2.3. The Algorithmical Approach

Definition 5. The deficiency of a nonempty binary sequence t of length L is the value
L−K(t |L), where K(t |L) is the entropy of t conditional to L. The specific deficiency is the
deficiency divided by the length. (An additive term from the definition of the entropy divided by
the length of a sequence tends to zero as the length tends to infinity. So, in the limit, the notion
of specific deficiency is invariant.)

In the sequel, to estimate the deficiency of sequences, we will use the deficiency of auxiliary
regular sets. Let us introduce the following notation. Assume that a normal rule r selects a
subsequence of length n; denote the deficiency of a regular set Ar,ε by D(n, ε). An important
property of the deficiency of a regular set is that the deficiency does not depend on L (the length
of sequences to which place-selection rules are applied). For a given n, D is a monotone increasing
step function of ε ∈ [0, 1/2]; boundaries of steps are rationals with the denominator 2n, values of
the function are binary logarithms of rationals, and all these rationals computably depend on n.

When ε is small enough and n is large enough compared with 1/ε, we have D(n, ε) ∼ d(n, ε).
At first sight, a natural analog of Theorem 4 would be the following:
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Assertion 1. Assume that δ > 0 is small enough and a natural L is large enough. Assume
that t is a binary sequence of length L and of specific deficiency ≥ δ. Then there exists a rule r
such that

K(r |L) ≤ α(δ) and D(n, ε)/L ≥ δ′(δ),
where n is the length of r[t], ε is the deviation in r[t], α and δ′ are positive functions.

But the following theorem trivially implies the negation of Assertion 1.

Theorem 4′′. Let α and δ′ be positive numbers. For any natural L large enough, there exists a
binary sequence t of length L and of specific deficiency greater than 1/2 such that, for any rule r,

K(r |L) ≤ α ⇒ D(n, ε)/L < δ′ ∨ n = 0,

where n is the length of r[t] and ε is the deviation in r[t].

Proof. Denote by RL the family of all rules r such that K(r |L) ≤ α. Given numbers �α�, L,
and |RL|, one can effectively find a list of elements of RL. Denote by rn the n-normalization of a
rule r.

Consider the uniform distribution on binary sequences of length L. It follows from the definition
of the function D that, for any rule r, the probability of the set Arn,ε is equal to 2−D(n,ε).

For each n, take the least step bound ε such that D(n, ε) ≥ δ′L. If such ε exists, it is a
rational from [0, 1/2] with the denominator 2n. Denote by E this collection of pairs 〈n, ε〉. Since
|RL| < 2α+1 and |E| ≤ L, the probability of the union of sets Arn,ε for r ∈ RL and 〈n, ε〉 ∈ E does
not exceed ∑

〈n,ε〉∈E
2−D(n,ε)+α+1 ≤ 2−δ′L+α+1+lbL.

For L large enough, the last expression is strictly less than 1. Given lists of elements of RL and E,
using exhaustive search one can find a sequence t of length L that does not belong to Arn,ε for all
r ∈ RL and 〈n, ε〉 ∈ E.

Now let us try to briefly encode information sufficient for constructing a list of elements of E.
Clearly, one can construct E if he knows L and the pair 〈n, ε〉 such that the function D achieves its
minimum on E at the point 〈n, ε〉. Thus, the entropy of the list conditional to L does not exceed
2 lbL+O(1).

The sequence t is constructed from numbers L, �α�, |RL|, and the collection E; therefore,
K(t |L) ≤ 2 lbL + C(α). The specific deficiency of t is equal to 1−K(t |L)/L, which is greater
than 1/2 for large enough L.

Assume that r ∈ RL, n = �(r[t]), and ε is the deviation in r[t]. Assume that D(n, ε)/L ≥ δ′.
Then, by the construction, t does not belong to Arn,ε; hence, the deviation in r[t] is strictly less
than ε. This contradiction concludes the proof. �

To repair the analogy with the combinatorial approach, a place-selection rule under the algo-
rithmical approach should be interpreted as not an explicit function but a program that gets the
length of a sequence L as an additional input and computes the function r from Definition 1; now,
the function r may be defined not everywhere.

Definition 6. The frequency α-deficiency of a binary sequence t of length L is the maximum
of the value D(n, ε)/L over rules r that are determined by programs such that r[t] is defined and
the entropy of the program conditional to L is less than α (where n is the length of r[t] and ε is
the deviation in r[t]).

Let us remark that, as α increases, the frequency α-deficiency also increases.

Theorem 4′. Assume that δ1 > 0 is small enough. Then, for each rational δ0 > 0, one can
effectively find L0 such that, for any δ ∈ [δ0, δ1] and natural L ≥ L0, the following condition holds:

PROBLEMS OF INFORMATION TRANSMISSION Vol. 39 No. 1 2003



ON THE ROLE OF THE LAW OF LARGE NUMBERS 141

If t is a binary sequence of length L and of specific deficiency δ, then the frequency α-deficiency
of t is greater than

δ′ =
δ

ln(1/δ)
(1−B(δ)),

where α =
4 ln(1/δ)

δ
and B(δ) = O

(
ln ln(1/δ)
ln(1/δ)

)
.

Remark 5. We see that this theorem corresponds to Assertion 1.

Proof. Let us construct a rule that selects a subsequence of large deviation from t. Split the
sequence t into two parts of approximately equal lengths (i.e., their lengths are equal to �L/2� and
�L/2
). Split each part again into two parts of approximately equal lengths and so on. Before
the (i + 1)st stage of the recursive construction of our rule, we choose one part of t obtained
after i splits (before the first stage, this part is the sequence t itself). Denote this part by ui

and denote its complement11 by vi. We assume that, before the (i + 1)st stage, exactly the cards
from vi were turned over, and neither of them was selected. We assume also that the specific
deficiency of ui conditional to vi is greater than δ+λ(i−1), where λ is a number from the interval(

δ

ln(1/δ)
,

2δ
ln(1/δ)

)
such that the number (1− δ+ 3λ) is rational. For large L, the last assumption

is obviously true for i = 0.
Now let us describe the (i + 1)st stage. Split the sequence ui into two parts of approximately

equal lengths and denote them by w1 and w2. Let γ = �(1− δ + 3λ)�(w1)�. Consider two possible
cases.

1. Let K(w1 |vi) < γ and K(w2 |vi) < γ.
Since the entropy function is enumerable from above, given vi and γ, these facts can be discovered

within, say, T1 and T2 steps of the enumeration. We do not know the numbers T1 and T2. Our aim
is to know the greater of them. Without loss of generality, assume that T1 ≤ T2. Then the rule
should turn over all cards from w2, selecting nothing. Knowing w2, we can wait for its appearance
in the enumeration, and hence we can know T2. Now consider the set S of sequences s of length
�(w1) such that we can discover within less than T2 steps that the inequality K(s |vi) < γ holds.
Obviously, w1 ∈ S. The set S contains less than 2γ elements; therefore, its specific deficiency
is greater than 1 − γ/�(w1) ≥ δ − 3λ. (If T1 ≥ T2, then we obtain a similar inequality since
�(w1) ≤ �(w2).)

Now apply Theorem 4 to the set S with this bound for the specific deficiency. The proof of
Theorem 4 shows that there exists a family of rules R such that

|R| ≤
(

1
δ − 3λ

)1/(δ−3λ)+O(1)

,

and regular sets generated by normalizations of rules from R cover S. One of these regular sets

(denote it by A) contains w1, and its specific deficiency is ≥ δ − 3λ
ln(1/(δ − 3λ))

(1 − β), where β =

O

(
ln ln(1/(δ − 3λ))
ln(1/(δ − 3λ))

)
= O

(
ln ln(1/δ)
ln(1/δ)

)
. Let the normal rule generating A selects from w1 a

subsequence of length n and deviation ε. Since the deficiency of A is not greater than D(n, ε), we

11 Here, the complement is the binary encoding of the sequence t, where digits of ui are replaced by a special
new symbol.
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have

D(n, ε)
L

≥ δ − 3λ
ln(1/(δ − 3λ))

(1− β) =
δ

ln(1/δ)

(
1−O

(
1

ln(1/δ)

))
(1− β)

=
δ

ln(1/δ)

(
1−O

(
ln ln(1/δ)
ln(1/δ)

))
.

The place-selection rule that we are constructing stops when Case 1 is realized.
2. Let K(w1 |vi) ≥ γ or K(w2 |vi) ≥ γ.
To be definite, assume that K(w1 |vi) ≥ γ. By the theorem about the entropy of a pair, we

have K(ui |vi) = K(w1 |vi) +K(w2 |w1,vi)−O(logK(ui |vi)) (clearly, the pair 〈w1,vi〉 can be
identified with the complement of w2). Hence it follows that

K(w2 |w1,vi) = K(ui |vi)−K(w1 |vi) +O(logK(ui |vi))
≤ (1− δ − λ(i− 1))�(ui)− (1− δ + 3λ)�(w1) +O(log �(ui))
≤ (1− δ − 2λi− λ)�(w2) +O(log �(ui)).

For large �(ui), it is easy to deduce the following inequality for the specific deficiency of w2 condi-
tional to w1 and vi:

1− K(w2 |w1,vi)
�(w2)

> δ + λi.

After that, the place-selection rule that we are constructing passes to the (i + 2)nd stage with
ui+1 = w2.

The specific deficiency is always not greater than 1; hence, the second case can be realized less
than (1 − δ)/λ times. Therefore, the number of stages in the rule constructed does not exceed a
number independent of L. This yields that, for large enough L, the assumption that �(ui) is large
holds for all i.

It remains to estimate the entropy (conditional to L) of the rule constructed. To construct it,
we used the following information:

• the value of 1− δ + 3λ;
• for each stage: whether the first or second case holds;
• for the second case at each stage: which inequality holds, K(w1 |vi) ≥ �(1− δ + 3λ)�(w1)� or
K(w2 |vi) ≥ �(1− δ + 3λ)�(w1)�;

• for the first case at the last stage: which inequality holds, T1 ≤ T2 or T1 ≥ T2, and also the
number of the set A in the family R.

To find the rational (1 − δ + 3λ), it is sufficient to find (δ − 3λ); for this, it is sufficient to

find a natural from the interval

((
δ − 3δ

ln(1/δ)

)−1

,

(
δ − 6δ

ln(1/δ)

)−1
)

. Since the length of the

interval is greater than 1, it contains a natural, and the entropy of this natural is not greater than
lb(1/δ) +O(1).

Thus, an upper bound for the entropy of the rule can be obtained from the following sum by
adding several logarithms of this sum (logarithms appear because of encoding tuples):

lb
1
δ

+O(1) + 2
(

1− δ
λ

+O(1)
)

+ lb |R|+O(1).

For small δ, this bound is less than
4 ln(1/δ)

δ
.

Finally, let us remark that, every time we wrote “L is large enough,” the corresponding lower
bound for L could be effectively derived from δ0. The value L0 is the maximum of these bounds.�
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Remark 6. In Theorem 4, we could restrict ourselves to regular sets generated by monotonic
rules (however, using only nonadaptive rules was not sufficient). Conversely, in Theorem 4′, non-
monotonic rules are necessary, as Theorem 6′ shows.

Theorem 5′. Assume that δ0 > 0 is small enough and consider a natural L > (1/δ0)5. There
exists a binary sequence t of length L and of specific deficiency greater than δ0 such that its frequency
α-deficiency is less than

2δ0
ln(1/δ0)

(1 + 3δ0)

for α = Lδ40/70.

Proof. Take the set of rules such that their entropy conditional to L is less than α. Some of these
rules are defined not everywhere; let us extend them to all sequences (of length L) in an arbitrary
way. Take n-normalization of these rules for all n = 1, . . . , L. The number of rules obtained is less
than L·2α < eLδ

4
0/70. Consider the set of sequences S that was (effectively) constructed in Theorem 5

for the numbers δ =
1

�1/δ0� − 1
and L. Since δ > δ0, we have L > (1/δ)5, eLδ

4/70 > eLδ
4
0/70, and

by Theorem 5 there exists t ∈ S such that

max {D(n, ε)/L | n = �(r[t]), K(r |L) < α} < 2δ
ln(1/δ)

<
2δ0

ln(1/δ0)
(1 + 3δ0).

The entropy of any t ∈ S conditional to L does not exceed 2 lb(1/δ)+ lb |S|. Therefore, the specific

deficiency of t is not less than 1 − lb |S|+ 2 lb(1/δ)
L

. By Theorem 5, the specific deficiency of S
(which equals 1 − lb |S|/L) is greater than δ. Hence, the specific deficiency of t is greater than
δ − 2 lb(1/δ)/L > δ0. �

Definition 7. The monotonic α-frequency deficiency of a binary sequence t of length L is the
maximum of the value D(n, ε)/L over monotonic rules r generated by programs of entropy less
than α, where n is the length of r[t], ε is the deviation in r[t], and the entropy is conditional to L.

Theorem 6′. Assume that δ > 0 is small enough and consider a natural L ≥ (1/δ)2. Then
there exists a binary sequence t of length L and of specific deficiency greater than 1/2 such that its
monotonic (δL/4)-frequency deficiency is less than δ.

Proof. To construct the sequence t, we will consider a game similar to that used in the proof
of Theorem 4. But in this case the value of a bet may be any number less than the current capital
(and the game is called the game “on cash”). The initial capital is equal to 1. It is convenient to
say that a bet is a fraction σ of the current capital; then the current capital is multiplied by (1+σ)
in the case of winning (if the next digit has been guessed right), and by (1− σ) in the other case.

To each monotonic rule r, binary digit b, and number σ ∈ [0, 1], assign the following strategy in
the game: at step i, the rule r is applied to the segment t1:i−1; if the rule prescribes to select the
next digit, the bet σ is placed on b, otherwise, the bet is not placed. If r is undefined on a segment
t1:i−1 (the program does not stop), then the strategy is undefined at all subsequent steps and the
current capital becomes undefined too. Clearly, if the digit b occurs nb times in the subsequence r[t]
of length n, than the final capital of the strategy is equal to (1+σ)nb(1−σ)n−nb (and the deviation

is equal to
∣∣∣∣12 − nb

n

∣∣∣∣, hence an estimation of the deviation can be obtained from an estimation of

the capital).
Assume that 1/δ is natural; in the end of the proof, we explain what should be done with an

arbitrary δ.
LetRL be the set of all monotonically selecting programs of entropy less than δL/4, and R be the

number of them. Without loss of generality, we can assume that a monotonically selecting program
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(possibly, undefined everywhere) is assigned to each codeword; moreover, if codewords are different,

the assigned programs are different too. Therefore, R = 2�δL/4� − 1. For n =
⌈

ln(4LR)
δ

⌉
, . . . , L,

define the bet σn =

√
ln(4LR)

n
. We will consider the set of strategies assigned to all possible σn,

r ∈ RL, and b ∈ {0, 1}.
Let us introduce several auxiliary values, which will be useful in the construction of t. Let Si

be the total capital of all strategies that are defined at step i (this capital depends on t1:i−1 only).
The initial capital S0 is equal to the number of strategies and hence is less than 2LR.

The idea of the construction is as follows: at each step, we choose ti so that the total capital does
not increase; then the final capital of a strategy is not greater than the total initial capital S0, and
we obtain an estimation of the deviation in the sequence. However, we cannot perform this directly
since we cannot verify algorithmically whether a rule is defined on a given segment; therefore, we
cannot compute Si+1 for both possible values of ti. Thus, at each step of our algorithm, we need
additional information.

Let Qi be the total capital at step i of strategies that will be defined at the next step, i+ 1, too
(i.e., defined on the segment t1:i). It is obvious that Qi ≤ Si.

Define the sequences Pi and mi:

P0 = S0,

mi =
⌊
Pi −Qi

2R

√
δ

⌋
,

Pi+1 = Pi + 2R− 2Rmi√
δ
.

It easily follows that

Pi −
2Rmi√

δ
− 2R√

δ
< Qi ≤ Pi −

2Rmi√
δ
.

Now let us describe the procedure of constructing the next digit ti+1 given a segment t1:i and
the values of Pi and mi. The procedure consists of two stages:

1. All strategies are applied to the segment t1:i in parallel; the current capital of strategies already

defined on this segment is computed until their total capital exceeds Pi −
2Rmi√

δ
− 2R√

δ
.

2. Then the value of ti+1 is chosen so that the total gain of strategies that were defined at Stage 1
is nonpositive.

First, let us prove that the algorithm is well defined. If the segment t1:i has already been
constructed, then the values Si, Qi, Pi, and mi are defined. Assume that the algorithm was given
correct Pi and mi. During Stage 1, there will be a moment when every strategy that is defined on

this segment has already been defined. Their total capital is equal to Qi > Pi−
2Rmi√

δ
− 2R√

δ
; hence,

at a certain moment, Stage 1 will stop. Let us note that, for each (defined) strategy, the sum of
the gains for ti+1 = 0 and ti+1 = 1 is zero. The same is true for any set of (defined) strategies;
therefore, the total gain at Stage 2 cannot be positive for both values of ti+1.

In the sequel, we need several properties of the values used.

1. Si ≤ Pi.
By the definition, S0 = P0. Let us estimate Si+1. The total capital of the strategies that were
defined during Stage 1 (denote it by Q′

i) does not decrease. The capital of other strategies is
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equal to Qi−Q′
i, and it becomes not more than (1 +

√
δ) times as large since the values of bets

do not exceed
√
δ. It is obvious that Qi−Q′

i < Qi−
(
Pi −

2Rmi√
δ
− 2R√

δ

)
≤ 2R√

δ
. Consequently,

Si+1 ≤ Q′
i + (Qi −Q′

i)(1 +
√
δ) = Qi + (Qi −Q′

i)
√
δ <

(
Pi −

2Rmi√
δ

)
+

2R√
δ

√
δ = Pi+1.

2. mi ≥ 0.
The inequality follows from the fact that Qi ≤ Si ≤ Pi.

3.
∑
mi < 2L

√
δ.

Let us sum up the equalities Pi+1 = Pi + 2R − 2Rmi√
δ

over all i. We get PL = P0 + 2RL −

2R
∑
mi/
√
δ and, taking into account that P0 < 2RL and PL > SL ≥ 0, we have

∑
mi = (2RL+ P0 − PL)

√
δ

2R
< 2L

√
δ.

Now we can estimate the entropy of the constructed sequence t. The algorithm should know
the set of strategies and the sequences Pi and mi. The set of strategies can be generated from L
and δ, and Pi can be generated from mi, L, and δ. Thus,

K(t) ≤ K(〈m0, . . . ,mL−1〉 |L, 1/δ) + 2 lbL+ 2 lb(1/δ) = K(〈m0, . . . ,mL−1〉 |L, 1/δ) + o(L).

The entropy of 〈m0, . . . ,mL−1〉 conditional to L and 1/δ can be majorized by the binary loga-
rithm of the number of tuples such that a tuple consists of L naturals and the sum of these naturals
is less than N =

⌈
2L
√
δ
⌉
. It can easily be shown that the tuple 〈m0, . . . ,mL−1〉 is uniquely de-

termined by the multiset of its partial sums {m0,m0 +m1, . . . ,m0 + . . . +mL−1} (repetitions are
allowed). The partial sums range over the set {0, . . . , N − 1}. Thus, the number of possible se-
quences {mi} does not exceed the number of unordered samples with replacement of N things L
at a time, which is equal to (

N + L

L

)
<

(N + L)N

N !
<

(
(N + L)e

N

)N
.

As a result, we have

K(〈m0, . . . ,mL−1〉 |L, 1/δ) ≤ lb

(
N + L

L

)
+O(1)

≤ N lb
(N + L)e

N
+O(1) ≤

⌈
2L
√
δ
⌉

lb
(

1 +
1

2
√
δ

)
e+O(1) < L/3.

Since K(t) < L/2, we get that the specific deficiency of t is greater than 1/2.
It remains to estimate the monotonic frequency deficiency of the sequence t. To this end, let us

fix a rule r and consider the subsequence r[t] of length n with deviation ε. Let us majorize D(n, ε).
Consider two possible cases.

1. n ≤ 7δL/8. Since D(n, ε) ≤ n, we obtain D(n, ε)/L ≤ 7
8δ.

2. n > 7δL/8. Assume that the number of zeros in r[t] is greater than the number of ones. Take
the strategy assigned to the rule r that places a bet σn on 0. The final capital of this strategy
does not exceed the total capital SL < PL ≤ P0 + 2RL < 4RL (this follows from the equality
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PL = P0 + 2RL − 2R
∑
mi/
√
δ). On the other hand, the capital of the strategy is equal to

(1 + σn)n( 1
2
+ε)(1− σn)n( 1

2
−ε). We have the inequality

n

2
((1 + 2ε) ln(1 + σn) + (1− 2ε) ln(1− σn)) < ln(4RL);

hence,

2ε ln
1 + σn
1− σn

+ ln(1− σ2
n) <

2
n

ln(4RL).

Using the fact that ln
1 + x

1− x ≥ 2x if 0 ≤ x < 1 and ln(1− x) ≥ −2x if 0 ≤ x ≤ 1/2, we obtain

ε <
2
n ln(4LR) + 2σ2

n

4σn
=

ln(4LR)
2nσn

+
σn
2

=

√
ln(4LR)

n
.

The Stirling formula implies that (
n

j

)
≥ en·h(j/n)√

8j(n − j)/n
.

Differentiating twice, we get (if ε ≤ 1/
√

5)

h

(
1
2

+ ε

)
≥ ln 2− 2ε2(1 + 10ε2/3).

Using these inequalities, we can easily check that

D(n, ε) < 2nε2 lb e(1 + 10ε2/3) + lnn < 2 ln(4LR) lb e
(

1 +
10 ln(4LR)

3n

)
+ lnn

< 2 lb(4LR)
(

1 +
10 ln(4LR)
3(7δL/8)

)
+ lnn ≤ 5

6
δL+O(lnL)

and therefore D(n, ε)/L <
7
8
δ (recall that δ is small, L ≥ (1/δ)2, and ε ≤ 1√

5
).

Finally, if the number 1/δ is not a natural, then we can carry out the same reasoning for the

number δ0 = 1
�1/δ	 ≥ δ, and obviously

7
8
δ0 < δ. �

2.4. On Optimality of Bounds

All bounds that are proved in this paper seem to be close to optimal ones, with the only
exception, and now we discuss it. Let δ and δ′ range over reals from (0, 1), L range over naturals,
and S range over the set of binary sequences of length L. Denote by ΦL,δ(δ′) the maximum (over
sets S with deficiency ≥ δ) of the least number of regular sets with deficiency ≥ δ′ such that their
union covers S. In essence, Theorems 4 and 5 give an estimation of this function Φ. Namely, for
some functions ρ1 and ρ2, we have

δ′ ≤ c1
δ

ln(1/δ)
⇒ ΦL,δ(δ′) < Lρ1(1/δ),

δ′ ≥ c2
δ

ln(1/δ)
⇒ ΦL,δ(δ′) > eL/ρ2(1/δ),
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where c1 ≈ 1, c2 = 2, and L ≥ (1/δ)5. In other words, when δ′ changes from c1
δ

ln(1/δ)
to c2

δ

ln(1/δ)
,

the function Φ makes a jump from an expression linear in L to an expression exponential in L.
If we are interested in the behavior of Φ for δ fixed and L → ∞, then the bound looks optimal
(though it is possible to sharpen the constants c1 and c2). But now consider the behavior of Φ as
δ → 0. Then, in the obtained bounds, the function ρ2 increases polynomially and the function ρ1

increases exponentially.
Open problem. Is it possible to strengthen the upper bound on Φ so that ρ1 becomes poly-

nomial?
An. Muchnik proved (see [2]) that, for a smaller upper bound on δ′, a linear function can be

taken as ρ1.12 More exactly, we have

δ′ ≤ c3δ2 ⇒ ΦL,δ(δ′) < L(c4/δ).

Thus, a positive decision of the problem seems to be likely enough.
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theory, which were one of the incentives to begin the present work. The authors are grateful to
A.V. Chernov for a great help in preparing the text for publication. The main contents of the
paper was reported at Kolmogorov seminar of Moscow State University in the spring of 2002, and
we thank its participants for attention.
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