Almost periodic sequences

An. Muchnik, A. Semenov, M. Ushakov
April 1, 2007

1 Introduction

Let X be a finite alphabet. We will talk of sequences in this alphabat is, functions
fromNto X (hereN={0,1,2,...}).

Leti,j e N,i > j. Denote byi, j] the set{i,i+1,...,]}. Call this set a segment.
If a is a sequence in an alphal®eand|i, j] is a segment, then the strimgi)a (i +
1)...a(j) is called a segment af and writtenali, j]. A segmenti, j] is called an
occurrence of a stringin a sequence if afi, j] = u.

We imagine the sequences going horizontally from left thitigo we shall use
terms “to the right” or “to the left” to talk about greater aswhaller indices respectively.

Definition 1. A sequencex: N — X is calledalmost periodidaf for any stringu
there exist such numbenthat one of the following is true:

(1) There is no occurrence afin a to the right ofm.
(2) Any a’s segment of lengtm contains at least one occurrenceuof

Let .o & denote the class of all almost periodic sequences.

The notion of almost periodic sequences generalizes themot finally ??? pe- FIXME
riodic sequences (the sequerés finally periodic if there exist® andT such that
a(n+T) = a(n) for all n> N). We will prove further that there exists a continuum set
of almost periodic sequences in a two-character alphahistgeem to be proved first
in [Jacobs]). Obviously, the set of all finally periodic sequaes in any finite alphabet
is countable. The definition of almost periodic sequencergd to K. Jacobs [Jacobs],
although some particular almost periodic (but not finalligdic) sequences was stud-
ied in the works of M. Morse [Morse], M. Keane [Keane] and Skitani [Kakutani].

To be correct, in the paper [Jacobs] a stronger propertynsidered and called
almost periodicity: for any string that has an occurrence inthere exists a number
such that everyr’'s segment of length contain an occurrence of

It would be more correct to call our sequences finally almesigglic, to establish
a correspondence

periodic C finally periodic
N N
almost periodic C finally almost periodic



This work studies almost periodic sequences accordinget®#finition 1. This a
more general notion; although we could develop in paratieltheory of almost pe-
riodic sequences in the sense of Jacobs’ work, we do not desaube the parallel
theory does not contain any new ideas. When the parallel¢hedpresent interest-
ing results we will mention them without proofs. Also, we Wike the term “almost
periodic sequence” in the sense of Definition 1.

The class of almost periodic sequences is significantlyerithan the class of fi-
nally periodic sequences and corresponds to a richer cfasaleworld situations. In
many cases, however, studying bidirectional sequencast{funs fromZ to %) would
be more adequate. We note that the theory of bidirectiomabst periodic sequences
can be reduced to the theory of unidirectional almost péisdquences, and study
only unidirectional sequences.

This work studies the class’ & in four directions. In Section 3 we study various
closure properties af7 &2. In Section 4 we consider methods of generating almost
periodic sequences: block products (known from the papeafi€]), dynamic systems
(an example: the sign of ginx)) and, finally, the universal method. In Section 5 we
present some interesting examples of almost periodic segse Section 6 considers
the Kolmogorov complexity of almost periodic sequencese $kction 2 is auxiliary;
it presents some equivalent definitions of almost periodiusnces.

2 Equivalent definitions

Consider all strings of length These are of two types: ones that occumironly
finitely many times and ones that have infinitely many ocawes. Let us call them
type | and type Il respectively. For amythere is a start ofr such that it contains all
occurrences of all strings of type I. Then, every string abl occurring in the rest
of a is of type Il

Consider a string of type Il. The above Definition 1 guarantees that gaps betwee
u’'s occurrences im are bounded above by some constanthis fact can actually be
taken as an equivalent definition of almost periodic segegnc

Definition 2. A sequencex is almost periodic if for any there exist numbenn
andk such that every segment of lendtioccurring to the right ok occurs infinitely
many times in0 and gaps between its occurrences are bounded abawve by

We stress that it is necessary to havdepend on. The following theorem shows
this:

Theorem 1. Let a be a sequence amd a number. Suppose that for evérthere
exists a numbek such that every segment afto the right ofk occurs infinitely many
times ina and gaps between its occurrences are bounded abowe bihena is
periodic.

Proof. Let us show thatr is periodic with periodn!. Considerk that corresponds
to m! in the statement of this theorem. We shall now prove thaef@ryi > k a (i) =
a(i+m!). Leti be greater thak andu be a string occurring i in positionsi
throughi +m! — 1. We are guaranteed that gaps between occurreneesrefno more
thanm. So, there is an occurrence wtarting at positiorj wherei < j <i+m-—1.



Since inthat casa(i..i+m! —1] =qa]
a(i)=a(
a(i+(j—1))=a(j

j--j+m —1], we have

D=ali+(-1),
+(-0)=ali+2(j-1),

Taking into account that—i < mand thug j —i) | m!, we get
a(iy=a(i+m),

which proves the theorent
This theorem in fact follows from a more general theorem (loy Muchnik).
Theorem 2. Let us calla: N° — X semi-linearif for any o € X the set{x € N¥ |
a(x) = g} is a finite union of sets of fornixg +iv | i € N}.
Let the following be true foor: N° — X

e These exists a finite séte Z°\ {0} such that for any and for any circlé&J € R®
of radiusr located sufficiently far from the point O there exists a poiatA such
thata (x+v) = a(x) foranyx e U NZ5.

e Foranyi <s,acN, afunctiong: N5-! — 3 defined by the formula

B(alv"'vasfl) = a(ala"waiflvaaaiw”aasfl)
is semi-linear.
Then,a is semi-linear.

Finally, let us give an effective variant of our main defioiti
Definition 3. An almost periodic sequenaeis calledeffectively almost periodic

e ( is computable,
o mfrom Definition 1 is computable givem

A parallel effective variant of Definition 2 is evidently dgalent to this one (we
can take all strings of lengthin turn, and choose maximal converselym+ k from
the effective variant of Definition 2 fits anyof corresponding length.

3 Closure properties of.e7 &

Denote by>* the set of all strings in alphabZtincluding the empty strind\.

Definition 4. A maph: Z* — A* is called ehomomorphisnf h(uv) = h(u)h(v) for
all u,v e 2*. (We writeuv for concatenation ofi andv).

Clearly, homomorphisnh is fully determined by its values on one-letter strings.
Let a be an infinite sequence of lettersXf By definition, put

h(a) =h(a(1))h(a(2))...h(a(n))....

Evidently, if a is periodic anch(a) is infinite, thenh(a) is periodic.
Theorem 3. Let h: ¥* — A* be a homomorphism, and: N — X be such a se-
quence thah(a) is infinite.



e If a is almost periodic, then so ga).
e If a is effectively almost periodic, then sohsa).

Proof. Let us call a charactex € X non-empty ifh(a) # A. Sinceh(a) is infinite,
there are infinitely many occurrences of non-empty letters.iNow, sincea is almost
periodic, there exists a numbkisuch that everyr’'s segment of lengtlk contains at
least one non-empty letter.

Take a natural numbér Every string of length in h(a) is contained in the image
of some string of length not more th&hin o (because every characters i contain
at least one non-empty character).

So, we found out that the homomorphi¢ncan neither shrink nor expand the se-
quence “too much”. The image of any segment of sufficienttleigis no longer
than LS and no shorter thah/k. This is the main idea that leads us to the desired
result. The following just fills in some technical details.

Let us take a prefix oft such that every string of lengii outside this prefix is of
type Il, and letm be a natural number bounding above the gaps between occesren
of these strings. Also let us take the corresponding prefix(af) and callh the rest
of h(a).

Every single letter i@ maps into some segment bofa) (which may be empty).
Mark all ends of these segments for all letterscof The sequencé(a) becomes
separated into blocks of letters. All letters within sucbhdid map from a single letter
in a (and some blocks may be empty). Sirxces finite, there exists an upper bousd
on lengths of such blocks. .

Consider any string of lengthl in h. It is contained in not more that blocks. Let
us denote by the string ina that produce these blocks and lbyj] the correspond-
ing a’s segment. We havpy| < kl. By v denote the string of lengtkl in a starting
ati. Everya’s segment of lengtim contains a start of at least one occurrenc& of
in a. Let us prove that every(a’s segment of lengtmScontains a start of at least one
occurrence ofl.

Now consider any segment of lengthSin h(a). It maps froma’s segment of
length not less thal%sz m (because every letter im maps to no more tha8 letters
in h(a)). This segment has a start of some occurrenceinfa. The image of this
occurrence contains an occurrenceudh h(a). Therefore, the considered segment
contains an occurrence of

To prove the second statement note th@) is computable and thahScan be
effectively computedd

Now let us study mappings done by finite automata.

Definition 5. A finite automaton with outpus a tuple(Z,A, Q,qo, T) where

2 is afinite set calleéhput alphabet

Ais afinite set calledutput alphabet

Qs afiniteset of states

(o € Qs aninitial state, and



e T CQxXZxAxQisatransition set

If (q,0,0,d) € T, we say that the automaton in statseeing the character goes
to stateq’ and outputs the charactér

Definition 6. If for any pair (g, o) there exists a unique tuple, o,d,q’) € T, the
automaton is calledeterministic

Definition 7. Let a be a sequence ard an automaton. A sequen(®, &), - --,(do, o), - -
is .«/’s routeon a if the following two conditions hold:

e ( is the initial state ofe7, and
o (0,a(i),d,0i+1) is @7’s transition for every > 0.

Letus calldy,...,dn,... ang?’s output on this route.

If « is deterministic, then it has a unique route on every sequedenote by (a)
its output onar.

Theorem 4. Let o/ be a deterministic finite automaton aodan almost periodic
sequence. Thew/(a) is also almost periodic. Moreover, df is effectively almost
periodic, then so is7 (a).

Proof. We need to prove that if some stringf lengthl occurs ineZ (a) infinitely
many times then the gaps between its occurrences are boahdee by a function ih.
To prove this, it is sufficient to prove that for every occueeli, j] of u located suffi-
ciently far to the right ineZ (o) there exists another occurrenceuofvithin a bounded
segment to the left af Obviously this already holds far: there exist two functions
k andm such that for any-character segmeiiit, j] starting to the right ok(l) there
exists a “copy” of it starting between- m(l) andi — 1.

Take anl-character string@i in </ (a) and its occurrench, j]. Suppose it is located
sufficiently far to the right (leaving the exact meaning afifficiency” to a later dis-
cussion). Calliy the corresponding string im (actually,u; = afi, j]). Let.« enter the
segmenti, j] in stateq;. For uniformity, denoté; =i andl; =1.

There exists an occurrencewin a starting between, —m(l;) andi; — 1. Denote
the start of this occurrende and the corresponding/’s stateqy. If 9> = q; then
</ outputs the string starting at.

If g2 # g1 consider the stringl, = afiz, j]. Letl» be its length. This string has
the following property. Ife7 enters it in statey;, it outputst on the first segment of
lengthl; if o7 enters itin state)p, it enters the last segment of lendtfwhich contains
a copy ofu) in stateq; and, again, output8. There exists another occurrence of the
string uz with a start betweetp, — m(l) andi, — 1. Letisz be this start andjz the
corresponding’s state.

If g3 = g2 Or g3 = g1, then the automaton enters a copy of the stunip stateqp or
g1 and outputsl according to the formulated property.df # 2 andgs # g1, repeat
the described procedure.

Namely, on the'th step we have a string, of lengthl,, with an occurrencép, j]
in a, and a set of states,...,q,. The property is that ife entersuy, in one of the
statesqy, ..., 0y, its output containgl. Then, we find an occurrence of with a start
betweenip, — m(l,) andin — 1, call its startin1 and the corresponding stadg, 1. If
On+1 €quals one of the stateg, . .., dn, then we have found an occurrenceudab the



left of i. Otherwise, we have found a string, 1 = a[in+1, j] with a similar property.
Sinceup 1 starts with a copy ofl,, if 7 entersu,,1 in one of the stateqy, ..., 0y, it
outputst somewhere in this copy; ¥/ entersu, 1 in stateq,. 1, it outputst at the end
of Unt1.

Since the set of7’s states is finite, we only need to do the procedure a finitebarm
of times, namely|Q| + 1 (where|Q| is the cardinality of this set). After this number of
steps we will definitely find another occurrencetiof

Let us show that the gap between the found occurrence andritfiaab occur-
renceli, j] is bounded above. For the startwfwe havei, > i; —m(l1). Thusly <
I1+m(l1). To be able to take this step, we need- k(l1).

On then'th step, we have

int1>1in—m(ln) >i1—m(ly) =m(l2) —... —m(ln),

and
it <ln+m(lp) <l 4+m(ly) +m(l2) +...+m(lp).

The n'th step can be performed if > k(In). To make this true, it is sufficient to
haveii —m(l1) —... —m(In_1) > k(In), so this is true if

>
>

=~

i1 > k(l3)+m(l1)+m(l2),

i > k(i) +mil) ..+ mllig).

Let k be the maximum of right-hand sides of these inequalities.

So, we proved that every stringthat has an occurrendi j] in </ (o) to the right
of k has another occurrence starting betweeig_; andi — 1.

If the sequencex is effectively almost periodic, all mentioned numbers can b
computed, sa@7 (a) is also effectively almost periodic)

Now we modify the definition of a finite automaton, allowinddtoutput any string
in the output when reading one character from input. We bhab¢ devices finite trans-
lators. Formally, a translator’s transition set is a sub$€ x 2 x A* x Q. The output
sequence on the routgp, Vo), - - -, {(Gn, Vn), - - - NOW is the concatenationvy ... v;.. ..

Define the program of effectively almost periodic sequemde be a pair of two
programs(p1, p2) wherep is a program computing (n) givenn, andp; is a program
computingm andk givenl (as in Definition 2).

Corollary 5. Let o be a deterministic finite translator with input alphakednd
output alphabef, anda : N — X* be a sequence such that the output sequen@e)
is infinite. Then

1. if a is almost periodic, then so is’(a), and

2. if a is effectively almost periodic, thew/ (a) is effectively almost periodic, and
the program for/ (a) can be effectively constructed given the programdor



Proof. The proof follows from Theorems 3 and 4. We decompose the mgpp
done by the translator into two: one will be a homomorphisih e other done by a
finite automaton.

Define f(a) as follows: the characterof f(a) is a pair(a(i),q;), wheregq; is
the state ofeZ when it reads thé&'th character ina. Obviously, f can be done by a
(deterministic) finite automaton. Then, defig€o,q)) as the strings that” outputs
when it readss when in statey. Obviously,g is a homomorphism.

It is also clear thag(f(a)) = </ (a). The effectiveness statement immediately
follows from the mentioned theorems.

Let a andf3 be two sequences: N — 2 andf3: N — A. Define a cross product
a x Bto be asequence x B: N — X x A such thair x B(i) = (a(i),B(i)).

We will show later that a cross product of two almost pericgkguences is not
always almost periodic. On the other hand, a cross produwtafinally periodic??? FIXME
sequences is finally periodic.

Corollary 6. A cross product of an almost periodic sequence and a finatlggie
sequence is almost periodic.

Proof. The proof immediately follows from Theorem 4 since the crpesduct
can be easily obtained as an output of a finite automatonrrgdke almost periodic
sequenceld

Now we turn to nondeterministic translators. Denoteddjo| the set of alle’’s
infinite output sequences on the input sequance

Theorem 7. (Theorem of uniformization.) Let/ be a translator and an almost
periodic sequence.

1. If &/[a] # 0 then there exists a deterministic translatdrsuch than#(a) €
</ [a] (so,«/[a] contains an almost periodic sequence).

2. If a is effectively almost periodic then givew and the program foar one can
effectively compute ife [a] is empty, and if it is not, effectively finds.

Note that ifa is not almost periodic then the uniformization could be isgible:

Let a be a sequenag = 01002000200000001. (1s and 2s come in random order,
and the number of separating zeroes increases infinitelg) Slbe a sequencg =
11222222211111111. (every zero in a group is substituted by the character faligw
that group). Then there exists a nondeterministic traoskat such thate7 [a] = {8},
but there is no deterministic translatet such thatz(a) = 3.

Proof. Let us fix for the following the sequeneeand introduce some terms. Any
pair (i,q) wherei is an integer andj is a state ofe/, we call a point. We say that a
point (i, gp) is reachable from the pointy,q:) if the translatore” can go from the
stateq; to the statey, readinga|is,iz], namely, there exists a sequence

<317 ui1>7 <$1+la ui1+1>7 LR <32717 Ui271>,32

such thats, = q1, s, = gz, and for alli € [i1,i> — 1] the tuple(s,a(i),u,s1) is

a valid &7’s transition. The sequencg,,ui,),...,(S,-1,U,—1),S, is called a path
from (i1,q1) to (i2,02), and the stringy, Ui, 41...Ui,—1 is called the output string of
this path. If there exists a path frofn,q:) to (i, ) with a nonempty output string,



we say thatiz, gp) is strongly reachable frori;, q1). We say that a point is strongly
reachable from a set of points if it is strongly reachablenfriome point in that set.
Denote byT,(i,q) a set of pointgj,q) reachable fromi,q). DefineQ;(i,q) = {q |
(1.d) € Ti(i,a)}.

Let (Ko, o) be some point. We say that a sequefge- ko < j1 < ... < jn< ...
is correct with respect tdko, ) if for every n > 1 there exists a pointkn, ;) such
that jn—1 < kn < jn, (ka,Sn) is strongly reachable froff, , (ko, %), andQj, (ko,So) =
Qjn (Kn; Sn).

We sketch this on a figure. The dots represent points, cireeked j, repre-
sentsQ;j, (ka,sn) = Qj, (ko, So), the wavy lines in the center of the “tube” picture paths,
and straight lines picture paths with a nonempty outpubgtri

Say the point(0,the initial state ofe) is an initial point. A sequence is called
correct if it is correct with respect to some point reachdiden the initial point.

Introduce an equivalence relation” on a set of all points:

(i, 0n) ~ (ig, ) iff  Ji >i1,i2: Qi(i1,01) = Qi(i2, Q).

This relation is obviously reflexive and symmetric. The sisinity property fol-
lows from the fact that i€ (i1, 1) = Qi(i2,02) then for allj > i Q; (i1, 01) = Qj(i2, o).
This relation has another interesting property. (i, qs) is reachable from(i, d2),
(i2,q2) is reachable frondiy, 1), and(i1,az) ~ (i3,q3) then(ii,q1) ~ (i2,q2) ~ i3Qs.
This is so because for alb> iz we haveQj(iz,g93) C Qi(i2,qz) C Qi(i1,q1)-

An amazing fact is that there can only be a finite set of eqenag classes, namely,
not more than ® whereN is the number of7’s states. If there were™2+ 1 pairwise
nonequivalent pointét, ..., tn, 1 } then for a sufficiently largewe would have ¥ + 1
pairwise different set®; (t1), Qi(t2),...,Qi(ton, 1), and that is impossible.

Now we are ready to prove the important

Lemma 8. «7[a] # 0 iff there exists a correct sequence.

Proof. If there is a correct sequence then sutsijo| # 0: on the figure we see the
path with a nonempty output string drawn in the center of tabé&”.

Now, suppose7[a] # 0. Fix some routédo, Uo), - .., (0n, Un), ... of &7 ona with a
nonempty output sequenaggu; ... Uy.... Consider a sequence of poiti@do), (1,01), ..., (N, 0n),. ..
where each point is reachable from the previous. Then thiggpseparate into a finite
set of equivalence classes:

{{,a) [0<i<ia},
{(i,a) |11 <i <z},

{,G) |im < i}



We see that all pointsi,q;) wherei > iy, is equivalent. Now we can construct a
correct sequence. Ldéb = im+ 1, o= gy,. We will construct two sequenceg
and (kn,sn) such thatjn—1 < kn < jn, Qj,(kn,sn) = Qj, (Ko, ), and the pointk, sn)

is strongly reachable from, , (ko,So). The states, will always be equal taj;,. Sup-
pose we already founkh_1 and j,_1. Letk, be any number such thit > j, and the
point (K, 0k,) is strongly reachable fromj, , (ko,S0). We can find such a point be-
cause the output sequence of the pth;) is infinite. Since(ko,So) ~ (kn, 0k, ), there
exists ajn such thatQj, (kn, dk,) = Qj,(ko,S0). By induction, we construct a correct
sequence with respect {&o, q,), and that point is reachable from the initial point, so
we have constructed a correct sequence. The proof of theddmoomplete™

Lemma 9. (a) If o is almost periodic and?[a] # 0 then there exists a correct
sequencey, j1,---, n, ... such thaBAVN(jn+1 — jn) < A.

(b) If a is effectively almost periodic then givew’ and the program fosr one can
find out if «7[a] is empty. If</[a] # 0, one can find\ and a point(ky, So) reachable
from the initial point such that there exists a correct segeg, with (jn11— jn) <A.

Proof. Let us construct an auxiliary deterministic finite autonma®® with the
output alphabef0,1}. Among its states we will have a statéor every states of <7

We will need the following property 6’. Denote by&) s, (a) the output sequence
of ¥ if we run it ona starting at timek in the states (this sequence starts at indiex
one can imagine its fir&t— 1 positions filled with zeroes). The property is that if there
exists a correct sequence with respect to the géis} theny o () is a characteristic
sequence of one such sequence. Othenigg, (a) contains only a finite number of
1s. (Under characteristic sequence of a sequé@neegjs < ... < jn < ... we understand
the sequencéa; } where

[ L,if 3ni= ],
B { 0, otherwise)

We describe the automat@fi informally (omitting details regarding its states and
transitions).

At the timek the automaton remembessand print 1. At the timé (i > k) the

automaton remembers the following (we denotejhiye last time less thanwhen
€ printed 1):

1. Qi(k,S),

2. the set of statepe Q;(k, s) such that the point, g) is strongly reachable froify (k, s),
and

3. the set of all set§;(l,q) wherel <i and the point{l,q) is strongly reachable
from Tj(k,s).

The automaton prints 1 if it sees that one of the sets fromtilid ttem equals
to the set in the first item. Otherwise, it prints 0. It is ohwéathat the information
remembered by the automaton is finite, and is bounded abowe fbyction in the
number of states of/.

The needed property &f immediately follows from the fact that if there exists a
correct sequence with respect to the pdhkts) then for alli > k there exists a point
that is strongly reachable frof(k, s) and equivalent tdk; s).



Now we are ready to prove the statement (a) of the Lemma. Seppfo| £ 0. Ac-
cording to Lemma 8 there exists a correct sequence with cegpsome pointko, So)
reachable from the initial point. The#i, s, (a) is a characteristic sequence of some
correct sequenci < j1 < .... If a is almost periodic then so 6 (o) according
to Theorem 4. It follows that there exighssuch thatn(jn+1— jn) < A.

Now we turn to the statement (b). To prove it, we build anottuexiliary finite
translatorZ. We describeZ informally, too. The idea is to find a poifk, s) such that
there exists a correct sequence with respect to that pointioThis, the translata®
at timei runs a copy of the automatdfi starting in every pointi,s) reachable from
the initial point. It is impossible for a finite translator temember all these copies.
But not all of these copies are different. Namely, at some tincan turn out that two
copies are in the same state. Then these two copies are emtsignited” andZ? may
forget one of them. We will make it forget the one that waststhtater. So, at any
time, 2 remembers a finite list of different states correspondingtoembered copies
of €. The later the copy was started the bigger its number in #te liet 2 print a
message “I am forgetting the copy numiméwhen 2 forgets a copy. If some copy,
say numben, should print 1, letZ print a message “The copy numbeprints 1”. For
convenience, le® print a message “I remembkcopies” every time.

If a is effectively almost periodic, then so (o), so givens/ and the program
for o we can compute the program fét(a).

Every started copy will either be forgotten at some time drsurvive infinitely. In
the latter case its number in the list will stop decreasingetime. LetN be the number
of such “survivors”; suppose they are started in pdints ., ty. Letig be the time when
the numbers of “survivors” stop decreasing (and thus becammal 1...,N). Every
later copy will eventually be forgotten, i.e. will unite \Wwibne of the “survivors”. So,
o/ [a] # 0 iff one of the “survivors” prints infinitely many 1s. In athwords, iff for
somei < N Z prints infinitely many messages “The copy numbprints 1”.

If we know the program foZ(a ), we can find the numbeM (it is one less than
the smallesh such that? prints “I am forgetting the copy numbet infinitely many
times), and know if there exisis< N with the required property. So, we can know
whetherez[a] = 0. If o/[a] # 0, we can find and the point;. Then there exists a
correct sequence with respectitand we can find\ (given a program foZ(a)) such
that the copy numbeirprints 1 on every segment of lengff) that is, there exists a
correct sequencg, such that for everyi (jnr1 — jn) < A. This completes the proof of
the Lemmal

Now we finish the proof of Theorem 7. Suppogéa] # 0 anda is almost periodic.
We should build a deterministic finite translatatfor that Z(a) € <7[a]. According
to Lemma 9 we find a pointko, Sp) and a numbeA such that there exists a correct
(w.r.t. the point(ko, o)) sequencg, such that for evern (jnt1— jn) <A. (Whena is
almost periodic, this can be effectively found givefhand the program foa).

Let Z work as follows. Up to the timé&y the translator prints an empty string.
At the timekg the translator prints an output string of any path from thaihpoint to
the point(ko, S0). Then,Z “marks” numbersjy, k, and states, such that

1. jn-1<kn<|n,
2. (kn,sn) is strongly reachable fror; , (ko, %), and

10



To do this, the translator remembers at the timeky (here we denote bl and |
the last positions marked as such):

1. a(i),a(i—1),...,a(i—24),

2. the last marked stateand a pair of number&\;,Az) such that —A; = j and
i—Ar =k,

3. Qi—p; (Ko, %0), Qi(ko,%0)-

If i — A1 <i— Ay, then the translator searches for the neXt o0 when it turns
out thatQ; (ko,s0) = Qi(i —Az,s), it marksi as the new §". If i —A; >i— Ay, then
the translator searches for the nekt.“ To do this, it searches;(ko,s) for a point
strongly reachable fror_x, (ko,S), and, when it finds, marks the corresponding
as the new K’ and the corresponding state at the timas the new &', In this case,
besides, the translator prints the nonempty output stringpme path from the last
marked point(k,s) to the newly marked point. In all other casésprints an empty
string.

Sincej, —kp_1 < 24, the remembered/2characters ofr will suffice to know if
the curreni should be marked a%™or “ j”, and to find the needed output string.

The output sequence &F is a concatenation of an infinite set of nonempty strim@s ... up.. ..
such thatyg is an output string of a path from the initial point tky, ), and for ev-
ery n > 0 u, is an output string of a path frorfk,_1,5-1) to (kn,Sn). It follows
that#(a) € a).

SinceZ can be effectively constructed, the proof is compléte.

4 Generating almost periodic sequences.
The universal method

In the paper [Keane] an interesting method of generatingitefD-1-sequences is pre-
sented. It is based on “block algebra”.

4.1 Block product

Let u,v be strings in the alphabg0,1} (we will use the symboB for this alphabet
from this point onwards, and also wriesequences in place of 0-1-sequences). The
block productu® v is defined by induction on the length whs follows:

URA=A
urVvlo= (ueVvu
uvl=(uav)u,

whereuis a string obtained from by changing every 0 to 1 and vice versa. Itis easy to
check that block product is associative and distributiviw@spect to concatenation:

u® (VW) = (URV)(URW).

11



Define the infinite block product. Let,, n=0,1,... be a sequence of nonempty

strings in the alphabdt such that fom > 1 u, starts with 0. Then the produe® u,
n=0
is defined as the limit of the sequence of strigsuy ® Ug,... Ug@Ui... QUy® . ...

Since for evenyn > 1 uy, starts with 0, it follows that every string in this sequensa i
prefix of the next string, so the sequence converges to sdiméaB-sequence.
In the paper [Jacobs] it is proved that for any sequegg of strings that start

with O their block product® un, is strongly almost periodic. This fact allows us to
n=
prove that the cardinality of/ &2 is continuum:

For aB-sequencev definea® = @ (Ow(n)). Now the mappingo — a® is an
n=0
injection of continuum intazZ' 2.

4.2 The universal method

Let Z be a finite alphabet.

Definition 8. A sequence of tupled, A, Bn) wherel, is an increasing sequence
of natural numbers, an8l, andB, is finite sets of strings in the alphab®tis called
>-scheme if the following three conditions hold:

(C1) all strings inA, have lengtH,
(C2) any string irBy has the fornviv, wherevy, v, € Ay, and

(C3) every stringu in An 1 has the formvivs. .. v where for each < k vivii 1 € By
(and thusy, Vi1 € Ay) and for allw € B, Ji < kw=vjVj;1.

Note that since all strings iA, have equal lengths, the representatica vy ... vk
of a stringu € Any1 is unique, and so is the representatir- vivo of a stringw €
Bn. Also note thaty, | In+1. A Z-scheme is computable if the sequeritgAn, Bn) is
computable.

Definition 9. We say that the sequenae N — X is generated by 2-schem€l, Ay, Bn)
if for all n € N there existk such that for all € N o[k, +iln, kn+ (i +2)In — 1] € By],
that is, a concatenation of any two successive string inéqeence

alkn,kn+1In—1], a[kn+In,kn + 2 — 1], ...
is in By.
The sequence is perfectly generated by the schelpé¢ kf,.
The sequence is effectively generated if the sequihisecomputable.
Proposition 10. Any scheme perfectly generates some sequence.
Proof. Let (I, An, Bn) be any scheme. Choose any sequeqqce A, and let

O =XgXg.. . XoX1X1 ... X1 +.. XnXn---Xn - ...
—_—— —— ——

% times :%—1 times l—”,:—l—l times

Thena is perfectly generated by the scheme if weldets | 1. O
Theorem 11. (a) Either of the next two properties of a sequemceN — Z is
equivalent to the almost periodicity of;

12



e O is generated by son®scheme,
e « is perfectly generated by somescheme.

(b) Either of the next two properties of a computable seqeencN — % is equiv-
alent to the effective almost periodicity af

e  is effectively generated by some computablscheme,
e a is effectively and perfectly generated by some computakdeheme.

Proof. We start with proving (a). Supposeis generated by son¥eschemél,, An, By).
Let us prove thatr is almost periodic. Take a stringe ¥* such thatu has infinitely
many occurrences ia. We prove that for somB everya’s segment of lengtiN has
an occurrence ofi. Denote the length ofi by |u|. Taken such that, > |u|. Let us
prove that every string if\, 1 containsu as a substring. Take, from the Definition 9.
Sinceu has infinitely many occurrences i, there exists an occurrence wfto the
right of k, starting, say, on a segméRf, + iln, kn + (i + 1)l — 1]. Since|u| < Iy, the
whole occurrence is contained in the segm&nt- il n, kn + (i + 2)In — 1]. According
to the same Definition, this segment afis in B,. So, some string i, containsu.
It follows that every string imA, 1 containsu since every string if\,1 contains all
strings fromBy, (see (C3)).

Now, due to the definition of generation and to (C2), (C3)rehexistsk,,1 such
that for everyi

aknp1+ilng1,knpa + (i +D)lher — 1] € Anga,

and thus everyr’'s segment of lengthlg, 1 to the right ofk, .1 contains at least one
occurrence of some string frofg,, 1, and thus, an occurrence af

Now suppose is almost periodic. We construct a schetheAn, B,) that perfectly
generates. Say that the occurrendiei + |u| — 1] of the stringu € A UB in o is good
if In]i. Let

A, = {uc 2" | uhas infinitely many good occurrencesdr
Bn = {u€ 3% | uhas infinitely many good occurrencesdr

We still need to defing,. We do this by induction. Ldy = 1. To find an appropriate
value forl,.1 havingl,, we prove the following

Lemma 12. There exists a numbéf such that evena’s segment of length’
contains a good occurrence of every stringjn

Proof. Let stringx in the alphabef{1,2,...,I,} be 12,...,1,,1,2,...,l,, and a
sequencg in the same alphabet to be an infinite concatenation. .. Define the cross
product of string of equal lengths similarly to the crossduat of infinite sequences.
Thenu is in By iff ux x has infinitely many occurrences it x 8. According to
Corollary 6, the sequenae x 8 is almost periodic, so there exidtssuch that every
segment of length’ has an occurrence efx x for everyu € B,. So, every segment
of a of lengthl’ has a good occurrence of evarg B,,. This completes the proof of
the Lemmal

Letln+1 be a number such thhf| In+1 and everya’s segment of length, ;1 has a
good occurrence of every string froBj.

13



Let us prove thatly, Ay, Bp) is @ scheme. To do this, it is sufficient to prove that
if ue Any1, U=ViVo... v Where|vi| =1y, k= '“l—:l then for each < k vivi1 € B, and
for every stringw € B, there exists$ < k such thatv = vivj 1.

Sinceu € A1, U has infinitely many good occurrencesdn Hence, for alli < k
vivi11 has infinitely many occurrences inwith a start of the forntl,.1 + (i — 1)|v|.
But this expression is a multiple &f, sovivi;1 has infinitely many good occurrences
in a, sovvi.1 € By foralli < k.

Now supposev € B,. The stringu has an occurrence i (even infinitely many
ones). Let one of these H¢, j + 1,11 —1]. According to the choice of,,1, the
segment]j, j + Inr1 — 1] has a good occurrence of the string so for some we
haveviv;; 1 = w.

Now we prove thatr is perfectly generated by the constructed scheme. For every
we letk, be the multiple of, such that every string x x that has only finite number
of occurrences imr x 3, does not have any occurrences to the right,of

(b) It is easy to check that the proof in both directions igefffre. O

Now we describe the universal method of generating stroalghost periodic se-
quences. Say thdk,, A,) is a strongz-scheme if fol, andA, the property (C1) holds,
and for evenyn every stringu € A, 1 is of the formu = viv». .. v wherev; € A, and for
everyw € A, there exists < k such thatv = v;vi 1. Also, we say thatr is generated
by a strong scheme if for eveinyandn afilp, (i +1)In — 1] € An.

The theorem analogous to the Theorem 11 is as follows:

Theorem 13. The sequence is strongly almost periodic iff it is generated by
some strong-scheme.

The proof of this Theorem is analogous to the proof of Theotémalthough more
simple, and is omitted here.

Now we prove that the block product is strongly almost pedod

Proposition 14. Let u, be a sequence @-strings each starting with 0. Then the

sequencey) uy, is generated by some strofiigscheme.
n=0

Proof. Leta = ® u,. Consider two cases.

n=0
(a) Starting from some all the stringsu, do not contain 1. Them has the
form vvv... for somev and thus is periodic. The scheme can be constructed tyiviall
(b) For an infinitely manyn’s the stringu, contains at least one 1. Thencan be

represented agd w, where eacltw, starts with 0 and contains 1. We prove this by
n=0
using the associative property of the block product. Thelpcd

UpRUI®R...0UnX ...
can be divided into groups
(WU ®...®Uy-1)® (U ®...®Uny_1)®...

so that each group contains and least one term that contalirettingw; be the block
product of thd’th group, we gety; start with 0 and contain at least one 1.
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Now we define the stronB-scheme generating = ® Wh. Letx, = ®w., Ih=
n=0
[X|, andAn, = {Xn,%n}. Since for evenyn the stringw, contains both 0 and Xln, An)

is a strongB-scheme. It is obvious that is generated by this scheme.
The proposition is provedl

4.3 Dynamic systems

LetV be atopological spacdy,...,Ax be pairwise disjoint open subsets\wbff : V —
V bea continuous function, amg € V be a point such that its orbftf"(x) | n € N} lies

inside U Vj. Define the sequenae: N — {1,...,k} by the conditionf"(xo) € Aq(n)-
=0

We WI|| show here two conditions yielding thatis strongly almost periodic and one
yielding thata is effectively and strongly almost periodic. (We say thas effectively
and strongly almost periodic if it is computable and givewe can comput@& such
that eitheru does not occur im or everya’s segment of lengtim has an occurrence
of u.)

Theorem 15.1f V is bicompact and the orbit of any point ¥fis dense??? inV, FIXME
thena is strongly almost periodic.

Theorem 16.1f V is a compact metric space affids isometric, therr is strongly
almost periodic.

It follows from the Theorem 16 thatif/ rtis irrational, then the sequengthe sign of simx}
is strongly almost periodic: to prove this, one can take eeiior theV and a rotation
with the anglex for the f.

Before we formulate the third theorem, fix some definitionise $efl s = [0,1)% is
calleds-dimensional torus. Fix the following metric arf. Let the mappingp: R® —

TS be defined by equality(x, ...,Xs) = ({X1},...,{%s}) where{x} denotes the frac-
tional part ofx. Thenp(a,b) = min{|a’ —b'| : p(a') = a, p(b') = b}.

A setA C RSis called algebraic if it is a solution set of some system dfpomial
inequalities (either strict or not) with integer coefficienA set is called semi-algebraic
if it is a union of a finite set of algebraic sets. A getc T® is called semi-algebraic if
there exists a semi-algebrddc” RS such thad =BN TS,

Suppose € R®. The mappindy: T°— T* defined by the equalitf,(x) = @(x+V)
is called a shift by the vectar. This mapping is surely isometric.

Theorem 17. Let V be s-dimensional torus, the poing have algebraic coordi-
nates,f a shift by a vector with algebraic coordinates, &p@pen semi-algebraic sets.
Thena is effectively and strongly almost periodic.

Proof. (of Theorems 15, 16 and 17) We start with proving Theorem 16.nééd
to show that if a stringi € {1,...,k}* has an occurrence o thenu is contained in any
sufficiently long segment ofi. Letu be of lengthl and have an occurrence in say,
u=alip,ip+1—1]. Denote byB, the open set

{xeV|xe A, f(X) €Ay, 71X € Ay ;-

Then fio(xg) € By, soBy is not empty. Since every orbit is denseMpwe havevx €
V3i e Nfi(x) € By. Thismean¥ c | f~(By). Since each set'(By) is open and/

i=0
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is compact, there exists€ N such thav c |J f~'(By). Thatis,vxeV 3i <mfl(x) €
i=0

By. In particular,¥n3i < m f"(xg) € By, so anya’s segment of lengtm+1 + 1

contains an occurrence of

Let us prove Theorem 16 by reduction to Theorem 15.\lzébe a closure of the
orbit of xg. ThenV; is also compact. Denote the metric\bby p.

Lemma 18. f(V1) C V4.

Proof. Suppose € V;. We prove thaf (x) € V;. Lete > 0. There exist& € N such
thatp(fX(x0),x) < €. Hencep(f¥+1(x), f (%)) < € because is isometric. Since this
holds for everye > 0, f(x) € V1. O

Lemma 19. For allx € V4 the orbit ofx is dense ifV;.

Proof. Letx eV, ye Vi, € > 0. We need to show that there existssuch
thatp(f"(x),y) < eps There exisk andl such thap(X(xo),x) < £/3, p(f'(x0),y) <
£/3 (sincex,y € Vp). We have two cases.

Case 11 > k. Taken=1—k. We have

p(f7K(0,y) < p(f74(%), f'(x0)) + p(' (%0),y) =
p(x, f¥(x0)) + p(f'(x0),y) < €/3+€/3< €.

Case 21 < k. Firstwe prove that there exists a number k such thap(f" (xo), f' (x0)) <
£/3. Thenp(f"(xo),y) < 2¢/3 and we can reason as in case 1.

SinceV is compact, for any > 0 there exist® such that among arly point there
exist two with a distance less th@n TakeN corresponding t@ = £. Among the
points f (o), f%(xo),..., fN(xo) there are two with a distance less thgn Let these
be fio(xo) and fio*" (xg) (wherer > 0). Thenp(fio(xo), f'o™(xo)) < £, and sincef is
isometric, for any we havep(f'(xo), f'*"(x0)) < %. In particular,

p(f (x0), F'* (x0)) < &,
p(f|+r(Xo),f|+2r(Xo))< %(7

p(fl+(k71)r(xo)7fl+kr(xo)) < %(7

and hencep(f' (xo), '™ (x0)) < £/3. Now we can také&' = | 4-kr > k. The proof of
the lemma is completel

Now we can prove Theorem 16. For the spagethe functionf, = f|y,, the
point Xo and the set®\ = A; NV, all conditions of Theorem 15 hold. Henceis
strongly almost periodic and the Theorem 16 is proved.

Let us switch to proving Theorem 17. Sin€é&is a compact metric space and the
shift is isometric, the resulting sequence is almost p&iadcording to Theorem 16.
Our goal is effectiveness issues.

Lemma 20. If V is a compact metric spacé,is isometric,A; are open subsets
of V, and the following conditions hold:

(a) Given a pointfk(xo) in one of the set#\, one can enumerate from below the
radius of its neighborhood that lies in the safe

(b) Giveng, one can effectively find ag-net in the closure of the orbit of.
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(c) Given two points in the closure af’s orbit, one can approximate the distance
between them.

(d) Givenu one can compute if occurs anywhere ia.

Then,a is effectively and strongly almost periodic.

Proof. Denotex, = f"(xo).

We are givenu and we should find such that everya’s segment of lengtim
contains an occurrence af Supposel occurs ina, say,u= afi, j] (we can find out
if it occurs anywhere using (d), and if it does, find the neeithelx by trying them
in turn). Find the pointsq,...,x; and for each poink find a numberg, such that
all the g-neighborhood of this point is included in the sameAgk, (we can do this
using (a)). Le = min{&} and letd = €/4.

Constructd-net ??? in the closure ofxg’s orbit using (b). Starting axg, start FIXME
calculating points of the orbit until every point éfnet is approximated with an errgr
d (here we use (c)). Suppose we needed to calcufabints of the orbit. Them= 2.
Let us prove this.

Suppose we have some segmentiobf lengthm starting at indexp. Consider
the corresponding points in the orbk,, ..., X,+m-1. Take the middle point of this
segmentx;, 1, and find the poiny of 6-net that is closer thad to it. Find the point in
the starting segment af that is closer thad to y. All this is done using (c). Suppose
it has the numbem < |. Then the poink; ;_n is closer than & to Xo.

Now perform a similar operation with a poirg (the starting point of a known
occurrence ofl). Namely, find a point in the d-net that is closer thap to x; and
find a point in the starting segment afthat is closer thamd to z. Suppose it has the
numberp < |. The pointx; is closer than & to x;.

Remember that the point, .|, is closer than & to xo. Thus we have that the
point X, 11—ntp is closer than &8 to x;. Since & = &, the pointx;,.|_n4p is closer
thane to x;, so there is an occurrence wstarting at indexp +1 —n+ p.

The lemma is proved]

Now we need to show that in the situation of Theorem 17 the itiong (a)—(d) of
Lemma 20 hold.

One major construct that is used heavily in the followinggfrig the Tarski The-
orem [Tarski]. It states that if we have a first order formgly, ..., xn) in the sig-
nature{+, x, <} and representations of algebraic numtaars. ., an, we can find out
if (ay,...,an) is true in the ordered field of real numbers. Call a/setpresentable if
there exists a first order formutg(x) that is true iffx € A. Surely any semi-algebraic
set in the torus is representable.

Let us check the conditions.

(a) Given a point with algebraic coordinates (all pointstia brbit have algebraic
coordinates since botg and the shift vector have algebraic coordinates) we camearit
formulag(r) stating that any point at a distance less th&in A,. Then, enumerating
all rational numbers, we can estimate from below the needehhorhood radius.

(c) All points involved will have algebraic coordinates, the distance will be al-
gebraic, and thus it can be approximated.

Checking (b) and (d) is harder. We will do this after studyihg structure o¥;
(the closure okg's orbit) more thoroughly.

17



Lemma 21. V7 is a union of a finite number of affine subspaces of equal dimen-
sions.

Proof. Take a point € V. If there exists a neighborhood athat does not contain
any other points 0¥y, then the orbit is finite.

Otherwise, there are points in the orbit at deliberatelylbdistances froma. Con-
sider straight lines going throughand these points, and the directions of these lines
(in other words, the points where these lines meet a unitrsptentered a). Since
sphere is compact, there is a nonempty set of limit direstigBuch directionss that
for everye > 0 andd > 0 there exist infinitely many points in the orbit such thatthe
are closer thas to a and the corresponding directions are closer thémw.) Consider
the corresponding straight lines. We prove that their affuneis contained in/;.

First, we prove that every limit line is contained \i. Take a pointx on the
line. There exists a poiny in the orbit such thap(a,y) < £/4 and the angle be-

tween(a,x) and(a,y) is less thancon:w. Also, there exists a poirzin the orbit

such thafp(a, z) < ;Z5po(ay). Then, the angle betwedn, x) and(zy) is still very

small (less tharzm).
We need to make sure thais earlier in the orbit thag. If zis later, we changgas

follows. Find a pointy’ in the orbit later tharz such thap(y',y) < ﬁtp(z,y), so the
angle changes small, and the lifey’) is still close to(a, x). Let the newy be thisy'.

Now we have that the angle betwegny) and (a,x) is less tha”con:W* and
p(zy) < €/2. Let us traverse along the orbit until it becomeg In the same number
of stepsy became anothey; such thaty; —y=y—2z So,y; lies on the line(z)y).
Repeating the operation, we get to the neighborhooxl dfhe nearest ta point of
the sequencwy, is at distance not more than the sum of the distance betwaed the
line (z,y) (which is less tharg /2 according to our construction) and the distance be-
tween two points in the sequence (whiclpig,y) < £/2). So, we have approximated
by the point in the orbit with error not more thanThis proves thax € V;.

Up to this point, we know that every limit line is containedin Our next goal
is to prove that their affine cull is containedVh. Suppose we proved that a cull of
some of the lines is containedVA. Take a new limit line that is linearly independent
of the considered cull (saya,b)) and prove that the new cull is still containedvin
Consider a poink in the new cull and project it alon@, b) to the previous cull. Denote
the projectionx;. Using the same technique as above, find two pdraady in the
orbit that are close te, to each other, and such that the angle betwegr and(a,b)
is less tharm. Also, we neect to be earlier in the orbit thay Find a pointx;
in the orbit that is later in the orbit thaand is closer ta; thane/2. Traverse along
the orbit until it becomes;. Theny becomes/. We havep(y'.X;) < £/2, and the
angle betweerix;},y) and(x,x) is less thanm. Traversingx; to becomey
and further, as above, we find a point in the orbit that is cltisen € to x. We just
added a new line to the cull. This procedure increases therdiian of the cull, so it
can be performed only finitely many times.

Now we prove that all points of the orbit that are not contdiimethe cull are not
closer to the cull than some a positive distance.

Assume for any > 0 there exists a point(¢) in the orbit that is closer thas to
the cull but is not contained in it. Talkee> 0. Takex(¢) and a poiny in the orbit and in
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the cull such thay is close to the orthogonal projectionx{i). Traversex andy along

the orbit untily becomes some poigtclose toa. Thenx becomes’ such thaty',x') is
almost orthogonal to the cull. Hené¢a,x') is almost orthogonal to the cull. As8— 0

we havex' — a, and(a,x’) tend to be perpendicular to the cull. So, we found a new
limit line, contradiction.

Now every point of the orbit is contained in an affine subspaicthe same di-
mension (since every one of them can be obtained from anbtharshift; this also
shows that all are parallel). Consider an orthogonal comet# to these subspaces
and project them to this complement. Every subspace pgojettt a point. The dis-
tance between any two of these points is more than somevmositimber. So, there
are only a finite number of these affine subspaces.

Note that ifW is one of the affine subspaces such WatT= C Vi, then alsap(W) C
V1. This follows from the proof of Lemma 21.

We want to find these affine subspaces gifeamdxy. Without loss of generality
we can assume thag = 0 since we always can shift the origin of the toruxgo Let
the translation vector have coordinatefs, .. .,ts).

Let d’ = dimg{ts,...,ts,1} — 1. We prove that the dimension of the affine sub-
spacesl equalsd’.

Proof. Recall thatd’ + 1 is the cardinality of the minimal subset of coordinates
such that all the coordinates can be rationally expresséatims of these coordinates
and 1.

First, we prove thatl < d’. Without loss of generality, we assume that the first
1=s—d coordinates,...,tx_1 can be expressed in terms of the kst . ..ts. Write
these expressions:

altc+...+adts+ad-1
1 = o+ raklstal 1

Consider these relations iif, a shift by a vectovn. We see thatl = nt; —k;- 1. So
the relations are the same except the coefficigiiffer. If we make the denominator
of all fractionsa? the same, we will see that the denominatoogfremains the same
when going fromf to f". Since all the; are less than 1, the absolute values of coeffi-
cientsa(‘) are bounded above. Hence there are only a finite number oibfmsalues
for al). So, for anyn the vectorvnthat is equal tof"(xo) (sincexo = 0) lies in one of
the finite number of affine subspaces of dimenslorSo,d < d'.

Now we prove thatd > d’. Project the whole picture onto the last coordi-
natesk,...,s. If d < d’ then each affine subspace \éf projects into subspace of
dimension not more thad, so they all cannot cover the whole coordinate subspace.
Let us prove that the projection ¥f covers all the coordinate subspdge. . ,s.

More precisely, we prove the following: if we project the vidapicture onto a coor-
dinate subspace of dimensibr d’, the image will cover all the mentioned subspace.
We do this by induction oh. The induction base is= 0. This case is obvious. As-
sume we proved the statement with some valule bét us prove it witH + 1. Project
the picture onto last coordinates. According to the induction hypothesis, thagen
has the dimensioh So, the projection on the lakt 1 coordinates has a dimension
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of eitherl +1 orl. We need to prove that it is+ 1. Assume, for the contrary, that
the dimension i$, that is, the projection 0¥, is a union of parallel affine subspaces
of dimensionl. They are not parallel to any coordinate axis (because yf Were, we
could project the picture along this axis, and the spaceddyooject into spaces of
dimension at most— 1, which cannot be true due to the induction hypothesis). The
subspaces intersetth coordinate axis by a point. The distances between adface
points are the same. Since the coordinate axis can be regasdecircle (because we
are in the torus!), this distance is rational. Write the eigumatf j'th subspace

ti = Oyt + ...+ Osts+ Q.

Since for differentj the difference betweeug is rational, and the point 0 is contained

in one of them, then al} is rational.

Consider the subspace containing 0 and its intersectidm avitwo-dimensional
coordinate subspace of coordinait@mndg. Its equation igj = agty. Consider a vector
in this subspace (but outside the torus) wijthoordinate of 1. Denote iiscoordinate
by x;. We have

X = 0gq- 1.

The equivalent vector in the torus hggoordinate of 0, an@-coordinate of; — n for
some integen. It is contained in some affine subspace numben

X—n= aq-0+a(j).
Sinceaé is rational, then the number

is rational too. So, all the coefficients is rational. This contradicts the fact thit}
are linearly independent ové&r. O

Now, we are ready to prove that the conditions (b) and (d) ofilve 20 hold in our
case.

First, find a primitive elemeny in the fieldQ[ty,...,ts, (Xo0)1,. .., (X0)s], represent
all coordinates of the vectorsand xg as polynomials iny and findd = d’ and the
coefficients of all equations of affine subspaces—exceptH@rcbefficientSJ(‘). We
can find all possible values far, but we still need to know which give us the needed
subspaces &f;. To find these, we fingp, X1, . . . until we have &-netin every subspace
that has at least one point of the orbit. Then we can say thatwe all the subspaces.
Suppose we then jump (ath step) from a known subspace to a not yet known. There
was a poinky, of thee-net near to,. Then there is a poingn, 1 near tox 1. ButXny1
is in the new subspace, apdXmi1,Xn+1) = P(Xm, X%n) < &, SOXm41 IS also in the new
subspace (remember that subspaces are separated bywemistaince), so really this
subspace is not new, but old.

Hence we can find the closure of the orbit and thus buikdreet in it. So, the
condition (b) is met. Knowing/;, we can also meet the condition (d). Suppose we
have a stringi and want to know if it occurs anywhere én We construct the set

Bu={0y) |ye T%@(y) € Ayp),---@(y+ (Jul = 1)v) € Ayup }
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This set is representable sindgis semi-algebraic sets andhas algebraic coordinates.
We can, giveru, v andA, find a formulag(x) that is true iffx € B,. Then, we can
construct a formula stating that there is a p@iit the closure of the orbit such that
Bu. Then, we use the Tarski theorem to find out if there existh ugint. So, the
condition (d) is also met, and this, finally, proves the Tlaol7.0

5 Interesting examples

Theorem 22.For anym € N there exists a sé& of m+ 1 effectively almost periodi-
sequences such that the cross product ofrasgquences frorA is effectively almost
periodic, and the cross product of alt- 1 sequences is not almost periodic.

Theorem 23. For anym € N there exists a s&& of m+ 1 effectively almost peri-
odic B-sequences such that the cross product ofrasgquences frorA is effectively
almost periodic, and the cross product ofral- 1 sequences almost periodic but not
effectively almost periodic.

A homomorphismh: >* — A* is called a collapse if for any charactere >
|h(o)| =1andlp| < |Z].

Theorem 24.For anym e N there exists a computable sequeaceN — {1,... ,m}
such that for any collapgethe sequenck(a) is effectively almost periodic. However,

(a) a is not almost periodic,
(b) a is almost periodic, but not effectively almost periodic.

Proof. (of Theorems 22, 23 and 24) We say tKiat Ay, Bn) is pseudoscheme if for
any collapsé (I, h(An),h(By)) is a scheme. We start by proving Theorem 24(a). To do
this, we construct a pseudoschetheAn, By) and a non-almost periodic sequerce
such that for any collapseh(a) is generated byl h(An),h(Bn)).

Let 2, be the alphabefl,...,m}. We will identify permutations oveEy, with
strings of lengtmin the alphabek,, without equal characters.

Define a sequendg and auxiliary set® c =In (whereu € B*1). The setsR! for
differentu € B"! are pairwise disjoint and have equal cardinalities.

We letRS be the set of even permutations o¥gy, andR be the set of add permu-
tations oveiz,.

Supposd;, and the setf! are already defined so that the sBfsare pairwise
disjoint and have equal cardinalities. Den@le= RPURY! for all v € B". We say that
the stringu is a complete concatenation of strings for a finiteMaf u = vivs. .. v of
strings fromM such that every string frofd is used and for every two stringg ,w» €
M there exists an index< k such thatv; = v; andw, = vi 1. Letk,, 1 be a minimak
such that there exists a complete concatenation of strings®}, (sinceO}, have equal
cardinalitiesk, does not depend an). Letln 1 = In(kni1 +2).

Foru € B2 we defineRY_ , as follows. Lete, & be the last two characters ofo
thatu= U'ed. Let

Rip1 = {V1. Vi, WIW2 |

. . / / J/
V1...Vk,,, is a complete concatenation fro@y ,wy € RY¢,w, € RI°%}
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It is obvious thatR;, , is pairwise disjoint and have equal cardinalities. We will
nameO; zones of rankn andRY regions of rankn. So, R¥ is a region of zoned},
whene € B. We thus have 2pairwise disjoint zones of rank, each being a disjoint
union of two regions of rank.

Let T = up,uy,... is a sequence d8-strings such thgu,| = n. Let Al = Oy, and
let B}, be ALAL, a pairwise concatenation of stringsAf). We prove thafl,, A}, BL) is
a pseudoscheme.

Lemma 25. For any collapsén, for anyn and any stringu;, up of lengthn+1
there exists a bijectiop: Ry — Ry? such thatyx € Ryt h(x) = h(¢(x)) (in particular,
h(Rr") = h(R)).

Proof. We use induction oven.

Letn=0. If up = up, let @ be an identity function. 1ty = 0,u, = 1, we takd, j €
>m such thath(i) = h(j) (suchi andj do exist becausk is a collapse). Define by
the equalitiesp(i) = j, ¢(j) =i, and@(k) = kfor k #1, j.

Suppose the statement foris already proved. Then for any,u, € B" there
exists a bijectionp: O — OR? that preserves. We construct a bijection for any
two regions of rankn+ 1. Letu;&0; and up£0, be any two strings of length +
2, where|ui| = n, &,& € B. Then every string irR,ffllal can be represented as=
V1...Vi,,,WiWz Wherev; € Opt, wy € Rit™, w, € R&%L By the induction hypothesis,

there exist bijectiongy : O2 — O%, @»: RUE — R2%2 andgs: RO — R2% that
preserveh. Let

O(X) = (V1) @u(V2) ... @r(Vig,, ;) P2 (Wa) @3(W2).

Then@u(v1)... @1 (V,.,) is a complete concatenation of strings@i?, thus ¢(x) €
R2%2%_ Obviously,is a bijection fromRE1%% to R%2%2%,

Since@, @ and s preserveh, so doesp. O

It follows from this Lemma that the images of all zones undgr eollapseh co-
incide, i.e.h(ORt) = h(Op?). It is now obvious thatln, h(A),h(BY)) is a scheme for
anyt andh.

Now we construct a sequencel®fstringst = up, Uz, ... and non-almost periodic
sequence such that for any collapgethe schemél,, h(A%),h(Bf)) generates(a).
Let

U — 0, if nis even,
"7 1071 if nis odd.

For everyn € N choose a string, from A} = Opr and let
O =X0X0-. - X0X1X1 - . X1 ... XpXn -« -Xn ...
% times E—ltimes l—r‘m—l—l times

Let us prove thatr is not almost periodic. As we can see from the definition, any
string in 090 wheren > 2 contains every complete concatenatipn .y, of strings
from O%. So every complete concatenatitn..ty, of strings fromO% occurs ina
infinitely many times. Fix one such complete concatenation

y= Vi AWRE B wBNE. VR vewew,
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whereV, € Of, w € Rf, W, € RJURS = 0.

Assumeq is almost periodic. Then the strinpgshould occur in every sufficiently
long a’s segment. Hencgis contained irx, for a sufficiently largen.

Let us prove thak does not contairy for evenn. It is easy to check that for
everye € B every string inO;7 ; is a concatenation of strings fro®}. So for evemn
Xy is a concatenation of strings fro@?. This means thax, is a concatenation of
strings of the formvy ... v, wiw, wherevi,w, € O{)\, andw; € R8 sSow; is an even
permutation.

We havex, built from blocks each having the length ofcharacters, and blocks
with numbers that are equal k9 + 1 modulok; + 2 are even permutations. Suppgse
is a substring ok, say,y = xq[i,i + |y| — 1]. (We start numbering characters in the
block with 0.) Let us prove than| i, so that the blocks iy are the blocks irx,, too.
Assume that is not multiple ofm: i = mg+r where O< r < m. For a stringv denote
the sets of characters that occur in this stringMyy Denote byt; the (q+i—1)'th
block of x,, and byr; thei'th block ofy. Then

tifrrm—1] =rj0,m—r—1], [0Or—1 =ri_s[m—rm—1].

But sinceM;m—1 U My o1 €qualsZm, it follows thatMy,jom—r—1 UMy, m-rm-1
also equalsm. But sinceMy, ;jm—rm-1 UMy, jjom-r—1 €qualsZm, too, we have for
anyi My, jom-r—1 = My, jo,m—r—1], SO the firsm—r characters in all blocks gfare the
same; this contradicts the assumption thét a complete concatenation. Ses mq
for someq € N.

Every block ofx, with a number equal t&; + 1 modulok; + 2 is an even permu-
tation. Hence there existgand 1< i < k; + 2) such thar; is an even permutation
forall j=i (modky+2). If i = kg + 1, this contradicts the fact thag 1 is an odd
permutation: we have, 1 = wi (see the definition of). If i # ky + 1, this contradict
the fact thay is a complete concatenation. Part (a) of Theorem 24 is proved

Now turn to the part (b). Fix some enumerable, but undeca&lablE C N. Define
a sequence dB-stringsuy, as follows. Let|uy| = nand letu,(i) = 1 if the number
is generated in less thamsteps of enumerating. Thenu, is a computable sequence
having the following property: for eveiythere existd such that for alh > A u,(i) =
E(i), butA cannot be computed giveénLet A, = Oph, andB,, = AjA,. Then, as it was
shown above(ly, Ay, By) is a pseudoscheme. Let (as above)

O = XoX0.. . X0X1X1 ... X1 ... XnXn...Xn ..,
—_—— —— ———

' Ml gy
T —1times

%times E—ltimes
wherex;, is lexicographically first string i, It is clear thata is computable. For
any collapsén h(a) is effectively generated b, h(An),h(Bn)), soh(a) is effectively
almost periodic.

Let us show thatr is almost periodic. Let, be n'th prefix of a characteristic
sequence oE, that is, |vy| = n, andvy(i) = E(i). TakeC, = O} and D, = C,Ch.
Then (I5,Cy,Dp) is a scheme becausg;; = voE(n) and every string irox’fl(”) is
a complete concatenation of strings fradlf". Let us prove thatr is generated by
the schemél,,,C,, D). Taken € N. We need to findn € N such that for allj e N

23



a[m+ jln,m+ (j +2)I, — 1] € Dy. There existd\ > n such that for ali > A u; starts
with v,. Hencex; is a concatenation of strings fro@iy = O. It follows that for all j €
N we havea[la+ jln,Ia+ (j+21)ln— 1] € Cy, anda{la+ jln,Ia + (j +2)ln— 1] € Dy,

Let us prove thatr is not effectively almost periodic. Assunte is effectively
almost periodic. We will obtain thd is decidable then. This will easily follow from
this property ofa: v, is a unique string such that every complete concatenation of
strings fromOY" occurs infinitely many times inr. Let us prove this property.

For a sufficiently large the stringy; starts withv;, sox; contains every complete
concatenation df, 1 strings fromO}{n, anda has infinitely many occurrences of these
concatenations. Ifi # vy, denote byj the number of the first characters where they

differ. Then for a sufficiently largé the stringy; starts withv,[0, j], andx; is a con-
Vn[0,]]

catenation of strings fror@j+1 . Using the same technique we used for proving the
part (a), one can prove that a complete concatenation ogstf'romolj’[f’l” cannot be

a substring of a concatenation of strings frﬁ)’ﬁ'ﬂ’”. Hence,a contains only a finite
number of complete concatenations}f.

The Theorems 22 and 23 follow from the Theorem 24.

Let us construct a sequencein the alphabeB™ ! that is not almost periodic,
but becomes almost periodic under every collapse. d;dte i'th projection in the
cross producB x B x ... x B, havinga = a1 x ... x amy1. Then the cross product
of everym sequences from the sftry, ..., amy1} results from a collapse af, and is
almost periodic.

Theorem 23 is proved in a similar way.

6 Almost periodic sequences and Kolmogorov complex-
ity

Let u be a string inB*. Consider all programs on a Turing machine that puirgc.e.
they halt withu on the tape). Of all these programs there is the shortestiors®ihe
fixed coding system).

Definition 10. The length of the shortest program outputtings calledu’s Kol-
mogorov complexitand written ak (u).

Let a be an almost periodic sequence amglits prefix of lengthn. We shall
studyK (an) as a function of.

Consider the following simple example: divide a circle iktarcs withk points
(having computable coordinates). Take a real numpeuch that%T is irrational.
Definea (i) as the number of arc containing the paigt The constructed sequenae
is almost periodic according to Theorem 16.

Theorem 26.For the constructed sequenze

K(an) < &(logn)

Proof. Denote the division points by, ..., X. For then’th prefix mark every point
on the circle with the number of arc it will go to after being ltiplied by n. We will
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havenk arcs corresponding to tHearcs of initial picture. Call themm-arcs. To tell
what arc will contaime it is sufficient to know whah-arc containgp.

Now to describe tha'th prefix of o we can use the numbersmfarcs containing
for all m < n. To know all these numbers mark the boundaries afadircs for allm <
n. There are@k boundaries. They divide the circle mr12—_1)k pieces. We need

to know the piece containing. To write its number, we nee@(log(@k)) bits.
Thus we will have the following program to primt,. It will incorporaten and the
number of the piece containing These are the values dependingroiThe program
will also have an invariant section (that does not dependh)onit will contain the
pointsxs,...,Xx and the code of the program itself. When the program is exdgiite
will take n, calculate the boundaries of all tinearcs for everym < n, and thus the
boundaries of all pieces. Then it will take the piece coritgjrp and thus know what
marc containgp for everym < n. Now it will be able to calculater,.

The length of this program i@’(log(@k)) + 0(1) (the last term is the length
of the invariant section). Since | ”2‘1) k) < 2logn+ logk, we have

K(an) < &(logn).

The proof is completed
For simplicity, we will stick to the alphab@. It is evident thaK(a,) < n+ 0(1)
(we can incorporater, itself in the program). The following theorem shows thasthi
bound cannot be reached for an almost periodic sequence.
Theorem 27. For any almost periodic sequenaethere exists a positive such
that
K(an) < (1—¢)n

Proof. First, prove that there exists a string of type | (occurringrionly finitely
many times). Either the string 1 or the string 0 belongs te typWe assume, without
loss of generality, that this is the string 0. There exist harsp andl such that every
substring ofa of lengthl to the right of p contains at least one zero. Thus, a string
consisting ofl +1 1's occurs only finitely many times. Letbe a string of minimal
length that occurs ir only finitely many times.

If |u| =1 (which implies thatr consists entirely of ones or zeroes), théfm,) <
0 (logn), becausery is determined only by, and we can incorporatein the program
using ' (logn) bits.

In the following we consider only thp'th suffix of a.

Let U be a string resulting when we omit the last charactar. ihssume w.l.0.g.
that we omitted 0, sa = u'0. We know that every occurrence dfis followed by 1.
The stringu’1 occurs infinitely many times ior (because if it had only finitely many
occurrences,’ would have had only finitely many occurrences, which corittadhe
assumption thati is the shortest string occurring only finitely many times)ende
there exisim andk such that everyr’s substring of lengtim to the right ofk contains
at least one instance afl. Letq = max{k, p}.

Let us show a “compression” algorithm that will encode using (1 — €)n bits.
Divide ap into blocks in the following way: first block has lengthand is written
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directly; the others has length and are encoded. The encoding procedure finds the
first occurrence ofi'1 in the block and write the block replacing this occurrentce' d
with U’

Now we need to show that this encoding does not lose infoonétie. the original
string can be reconstructed knowinf) and that we can build a program using this
encoding that outputs,, and has length less thah— €)n.

The decoding procedure is obvious. The first block of lergih just left as it is.
For every other block (it has length— 1 because exactly one occurrencesdf was
replaced withu') we find the first occurrence of and insert a 1 after it.

Now let us calculate the length of the program to outpyt Its invariant section
will contain the stringy, the numbersg| andm, and the first block of the encoded string.
The part which depends anwill contain the other blocks. The length of invariant part
is constant. In the other part for evarycharacters i we write onlym— 1 bits. So,
for n— g characters we will neeth—q) ”% bits. Thus

K(an) < (n—0) "2 +-o(1) < n(l—n%) + o) <n(l—¢)

for appropriatee. This proves the theoren
We will show that there exists a strongly almost periodicusggea such that
K(an) > n(1—¢). This result is proved in the remaining part of this section.

6.1 The construction

Let us build a scheméy, An) that will generate our sequence.
Define some sely of strings of lengtHg. Let

An=A{vi... Vi, | Vi € An_1, VaeA_13diia=Vi},

wherek, = lr:—jl The values fok, (and forl,, respectively) as well as fok andlo,
will be chosen later.

First, we prove the following Lemma:

Lemma 28. Let A be an alphabet and its subset. Denote b the set of all
strings of lengttk that contain all characters . Then for a sufficiently larggA| and
for k > 2|A|In|A| the following holds:

1 k
Bl > Z|A".

Proof. We will prove this forA’ = A, then for anyA’ it will be true too.

Let us take a randork-character string in the alphab&tand calculate the prob-
ability of its containing not all characters @ It is composed ofA| — 1 different
characters, and

Pr(the string does not contaitth charactey =

Al - 1)K L\WE
S (w) et

)
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for sufficiently largelA|. If k > |A[In4|A|, then

_ k.

. . 1
Pr(the string does not contaifth charactey = 2e” A < 2~ N4Al —

2A;

Thus the probability of a random string not to beBiis less than

. . 1
|A| Pr(the string does not contaiith charactey < >

so at least half of thi-character strings are B, and
1Ak k
SIAK < Bl < A,

which proves the lemma (the bound kbim the statement is weaker, but more useful).
O

The sequence is generated by the built scheme in the following way. Forstie
0 take a string, in Ag. For then'th step take a string,, in A, such that itd,_;-prefix
equals to the string,, , chosen on the previous step. We will get a sequensech
that all its prefixes of length, are strings fron#,.

Our next goal is to prove that we can choose strings on eaphirste way that
gives us the desired bound on Kolmogorov complexity. In ddhis, we will impose
restrictions on (yet undefined) values f@r | andAg.

Defining

kn > 4|An_1|l0g|An_1], (1)

we assure that from the Lemma 28 it follows that
1
[Aal > 5 1An-a[2.

This assignment makes the following Lemma true:
Lemma 29.If Ay =B'o andlg > &, then

&

log |An|

In

> (1-¢€/4).

Proof. Observe the transition fromto n+ 1. We have

log|An| _ log 3|An_1[*-1 _ knaloglAn a|—1 _ log|Ana| 1

In In In In-1 In

Repeating these calculations, we get

log|An| _ loglAol ¢ 1
In - I0 i; |n.
Sincek, > 2, ﬁ < 2n_1|0 and thus the sum is less than its doubled first term. Now

letting I be greater tha@ andAg = Blo we get (sincé; > lo)

log|An| _ log|Ad| 2
- lo I

>1-—¢g/4,

In

27



that proves the Lemmad
Let us prove that for the stapwe can choose such string frolq that the complex-
ity of every itsm-prefix is greater tham(1— €). Then, by the compactness theorem, it
will follow that there exists an infinite sequenaesuch that every ith,-prefix is in A,
and everym-prefix has the Kolmogorov complexity greater thafl — €).
For the stem+ 1 we will calculate the fraction id\,.1 of all stringsw with the
following property: there exists a numbar(l, < m<ln1) such thak (wy) <m—em.
For a fixedm the number of simple (with complexity less thamn- em) strings of
lengthm is less than 2-¢™. We will calculate the number of strings #&,.1 whose
m'th prefix equals to the fixed simple stringof lengthm.
Every string inA,+1 consists okn.1 blocks, every block is a string fromy,. As-
sume that the positiom is in j'th block, i.e. (j — 1)l <m< jly. In j’'th block
— (j — D), characters are fixed, angdl, — m are free, so there are no more than
2in—m strings of lengthil,, starting withw. There are stilk,,1 — j blocks free. We
can choose each of them to be any block fimgetting|Aq|%+1~1 ways to construct
a string inA,.1. Some of the resulting strings are notAp, 1 (because they do not
contain all blocks fromA,), but we seek an upper bound, so this does not matter. Thus
there are no more than
2J'|n*m|An‘kn+1*J'
strings inA, 1 that start withw, and no more than
2m—€m21|n—m|An|kn+1—i
strings that start with any simple string of lengith For the fractionfy, of those strings
in An11 we have
f 1
" Al

(becauseAn, 1| > 3|Aq k1),
21+jln—em

21+jln7£m|An|kn+1fj
|An‘k”+1

2]In sm‘An|kn+l j<

< 21+jlnfsmfjln(1fs/4)

fn< ————
" Al T
(becausé‘% > 1—¢/4). Taking logarithm, we get
logfm <1+ jln—em—jlp(l—g/4) <1—em+jlhe/4
(becausen> (j —1)lp)
logfn<1-—Ilne (gj —1) .

Let us sum these fraction over afl. Each one depends only gnso the sum is
actually overj:

Int1 knt1 knt1

Z fm = Z; fm<|nzzz1 Ine(3i-1) = 2t +he 222 dllne <
m= =
2-3lne 1 1 1
|n21+|n5 S |n21*§|n5 g 2*Z|n€
1-—2— 1'“5 1-—2— 1'“5
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for a sufficiently largd,, (since the denominator tends to 1).

We have proved that there is only a small fraction of strimg&i, 1 having simple
prefixes of lengths, + 1 throughl,, 1. Let us compute the fraction iy, 1 of strings
with simple prefixes of lengthig_1 + 1 throughl,. We already know the fraction these
strings constitute il\,. Every string fromA, can be made into a string #,,1 in the
same number of ways. So the fractiondin, 1 of the considered strings is the same as
in A,. The same argument works for smaller lengths of simple mrefi$o, the bound
on fraction inA, 1 of strings having a simple prefix of arbitrary length can b&aoted
by summing the above bound over @l I:

n —1l0e
;2’711“5 < Za Ol <1
= 1-2-1¢

for a sufficiently largdg. Since the fraction is less than 1, we have proved that fonany
there exists a string iA, such that all its-prefixes have Kolmogorov complexity more
thani(1—e¢).
Recalling the compactness argument, we prove the followheprem:
Theorem 30. For any positive real number there exists an almost periodic se-
quencea € B* such that
K(an) >n(l—e¢).
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