Upper semilattice of binary strings with the relation “ x is simple conditional toy”
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Abstract Now let us replace infinite sequencesand3 by finite

binary stringse andb. Of course, for any: andb there

In this paper we construct a structufe that is a “finite exists a Turing machind/ that produces from b. So to
version” of the semilattice of Turing degrees. Its elements get a non-trivial relation we have to put some restrictions on

are strings (technically, sequences of strings) anel y M. Itis natural to require that/ is simple (its program is
means thaf{ (z|y) = (conditional Kolmogorov complexity —short compared to andy). Here the notion of Kolmogorov
of x relative toy) is small. complexity comes into play. By definition, the conditional

We construct two elementsitthat do not have greatest ~ Kolmogorov complexityi (a|b) is the length of the shortest
lower bound. We give a series of examples that show howprogram that produceshavingb as an input. Now we can
natural algebraic constructions give two elements that have define the relatiom <. b asK (a|b) < ¢ (herea andb are
lower bound) (minimal element) but significant mutual in-  binary strings¢ is a number).
formation. (A first example of that kind was constructed by  If ¢ is a constant, this relation does not have good prop-
Gacs—Korner [4] using completely different technique.) erties (for example, it is not transitive). This relation also

We define a notion of “complexity profile” of the pair of depends on a specific programming language used in the
elements oRk and give (exact) upper and lower bounds for definition of Kolmogorov complexity. To overcome this dif-
itin a particular case. ficulties, we use the standard trick and consider the asymp-

totic behavior of the complexity for sequences of strings.

Letx = z1,z2,... be a sequence of binary strings. We
1. Introduction call it regular if length of z; is polynomially bounded, i.e.,
if |z;| < ci* for somec, k and for alli. Let R denote the set

Leta and3 be two infinite binary sequences. We say that Of all regular sequences. We say that regular sequenge
« is Turing reducible tg3 if there exists a Turing machine simpleconditional to a regular sequengef
M that produces: on its output tape whefiis provided on
input tape. Turing reducibility is reflexive and transitive, so K(z;]y;) = O(logy)
we get a preorder on the set of all infinite binary sequences ] o .
(this preorder is usually denoted kyr). The equivalence ~and writez < y. The <-relation is a preorder defined on
classed(z ~ y) & (z <r y) A (y <7 z)) form an upper R The rglatlor‘(;r <y Ay <x)is an equivalence rela—.
semilattice whose elements are called Turing degrees. Thidion- Equivalence classes form a partially ordered set which

semilattice is well studied in recursion theory (see, e.g., [6]) (for the same reasons as in the case of Turing degrees) is

an upper semilattice (any two elements have a least upper
*The work was supported by Volkswagen Foundation while visiting bound)

Bonn University . . . .
tThe work was partially done while visiting the University of Amster- We prove (SeCt'on 2) that this set is not a lower semilat-

dam and DIMACS center tice: there are two elements that do not have greatest lower




bound. Note that the set of Turing degrees is also not astrings and strings. Then
lower semilattice (see, e.g., [6]), but our proof goes in a
completely different way. K({p,q)) = K(p) + K(q|p) + O(log(|p| + lq]))

The semilatticeR is useful for analyzing the notion of ) ] ]
common information. This notion was introduced bgds” A sequencer = z1,»,... Of binary strings is callkiad
and Korner [4] in the context of Shannon information the- regularif there exist constanisandk such thaga;| < ci*
ory. They also described a similar notion in the algorithmic for all i. The set of all regular sequences is denotediby
theory but do not give a precise definition. We give such a VW& define a preorder ofi saying thate = w1,z ... pre-
definition in terms of the semilattic® (section 3). cedesy = y1,2,... if there exists a constamtsuch that

The main result of [4] is an example of two objects X (¥ilyi) < clogiforalli. (Let us agree thdbg = means
whose “common information” is far less than their “mutual 1082(2 +2) sologz is positive for allz > 0 and we do not
information”: Gdcs and Ktner provide such an example N€ed to consider the case- 1 separately.)
in context of Shannon information theory and mention that 1€ O-term guarantees that the definition does not
it could be reformulated for algorithmic information the- change if we replace the optimal functibrused in the def-
ory. This example was analyzed in [1] where an alternative iNition of Kolmogorov complexity by another optimal func-

proof for some special case of@s—Ksmer example was ~ ion. Moreover, since we us@(log) (and notO(1)), the
provided. definition remains the same if we replace conditional Kol-

A completely different example of two strings whose MOgorovcomplexity defined as above by prefix complexity
common information is much less than their mutual infor- (S€€ [5]for the definition). Indeed, these complexities differ
mation was given in [2]; for details see [3]. only by O(log n) for strings of length. Since elements of

In this paper we develop a third approach to the construc- £t are regular, this difference is absorbed®flog i)-term.

tion of such pairs of strings. It is based on the geometry of WO elements: andy areequivalenif = < y andy <
finite fields. Several examples of this type are given in Sec- Z- The equalence classes form a partially ordered set. We
tion 4. denote this set by.

The amount of common information does not determine
completely how much the stringsandb have in common.
What reflects this better is the “complexity profilec&nd
b", defined as the set of triplds, v, w) such thatK'(¢) <
u, K(a|c) < v, andK (blc) < w for some stringe. We
use the method of [3] to find exact upper and lower bounds
for complexity profile (Section 5). (Technically we have e z is an upper bound far andy, i.e.,xz < z andy <

Proposition 1 The setR is an upper semilattice: any two
elements have a least upper bound.

Proof. By definition, z € R is a least upper bound of
z,y € Rif

to speak not about stringsandb but about sequences of z
stringsagp, a1, - - . andbg, by, . .. such that complexity of;
andb; is proportional ta; see Section 5 for details.) e z < u forany other upper bound of = andy.
_ _ Letx = z1,22,... andy = y1,y2,... be any two ele-
2. The upper semi-lattice R ments of R. Consider the sequenee= zi, z»,... where

zi = (xs,y:). (Herep,q — (p,q) denotes a computable

Let us recall the definition of conditional Kolmogorov bijection between pairs of strings and strings.) It is easy to
complexity. LetU be a computable function of two ar- See that is a least upper bound farandy.
guments; arguments and values are binary strings. (In-
formally, U is an interpreter of some programming lan- Theorem 2 The setR is not a lower semilattice: there exist
guage, the first argument is a program and the secondWo elementse and y that do not have a greatest lower
one is program’s input.) Let us defin&y(z|y) as bound.
min{|p|: U(p,y) = z}; here|p| stands for the length of.
There exists an optimdl such that;; < Ky + O(1) for
any other computable functidid. We fix some optimal/
and callKy (z|y) theconditional complexitpf 2 wheny is
known.

The unconditionalKolmogorov complexity can be de- by 10 10 0 b pl L
fined asK (xz|A) whereA is an empty string. It turns out 1272005 Yno P10 U205 - =5 U
(see, e.g., [5]) that conditional complexity can be expressedand one more string of lengihdenoted by
in terms of unconditional complexity. Indeed, let us fix
some computable bijectiom ¢ — (p, ¢) between pairs of E=€1...€n

Proof. To prove the theorem we have to construct two se-
guenceg andy that have no greatest lower bound. Assume
somen is fixed; let us explain how-th terms ofr andy are
constructed. Considén binary strings of length denoted



(e; are individual bits). We want all these strings to be ran-

The construction described above is performed for each

dom and independent in the following sense: its concatenato indicate the dependence oret us writez(n) instead of

tion is a string of lengtl2n? + n which is incompressible
(its Kolmogorov complexity is equal to its length up@g1)

z, b%(n) instead ob?, etc. Assume that = 2(0), z(1), ...
is a common lower bound of andy. The first step in the

additive term). Such strings do exist, see [5]. Now consider proof is the following

two strings
z = H0bY .. 00bMbL ... DL

and
y=07"05...05"

Stringsz andy aren-th terms of the sequencesandy.

Let us mention that the pafr, y) contains the same in-
formation as the concatenation string of leng¥ + n
mentioned above, so the complexity of the paity) is
2n% +n + O(1).

In the sequel we use the following terminology. Strings
b¢ (fore = 0,1 andi = 1,...,n) are calledblocks We
have2n blocks; each block has length All the blocksb;
that are included iny are calledselectedblocks; all other
blocksb; —“* are calledomittedblocks. Our constructions
starts withn pairs of blocks and a stringthat says which
block is selected in each pair. The strings a concatena-
tion of all 2n blocks; the stringy is a concatenation of
selected blocks.

Now the proof goes as follows. Each selected block is
simple relative to bothr andy since it is a substring of both
z andy and position and length information could be en-
coded byO (log n) bits. (When we say that a strings sim-
plerelative to a strings we mean thak (u|v) = O(logn).)

Therefore, ifz is the greatest lower bound efandy,
any selected block is simple relativexoOn the other hand,
any omitted block could not be simple relativeztolndeed,
assume that some omitted blogks simple relative to:.
Thenb is simple relative tq; sincez is simple relative to
y by assumption. Then to restarefrom y it is enough to
specify the string andn <1 omitted blocks different from
b, i.e.,n? bits, and the complexity of paitr, y) is at most
2n2+O(logn) (n? bits iny andn? bits to specifyr wheny
in known). This contradiction shows that no omitted block
is simple relative ta.

Now let us show thay is simple relative toz. Indeed,
to find y whenz is known we need only to distinguish be-

tween omitted and selected blocks in each pair of blocks.

We may assume thatis known since it is simple relative to

z. Then we may enumerate all the objects that have small

complexity relative to: until we findn blocks (we have the
list of all blocks since we know). Thesen blocks will be

Lemma 1 There exists some constarguch that
K (b|z(n)) < clogn

for anyn and for any block that was selected at-th step
of the construction(There weren selected blocks at-th
step; each of them has lengih)

Indeed, consider all the blockghat were selected at
th step; leth(n) be one of them for which the complexity
K (b|z(n)) is maximal. The sequende = b(1),b(2),...
belongs toR. It is easy to see thdt < x and thatb < y,
becauseé(n) is a substring of botlr(n) andy(n). There-
fore,b < z, sincez is the greatest lower bound sfandy.
By definition,

K(b(n)|2(n)) < clogn

for some constant, the same inequality is valid for all other
selected blocks sinceb(n) has maximal complexity (rela-
tive to z(n)) among them. Lemma 1 is proved.

Lemma 2 There exists some constarguch that
K (bly(n)) > n <clogn

for anyn and for any blocl that was omitted at-th step
of the construction.

Proof. As we have said, the stringn) can be recon-
structed from the string(n), the strings(n), some omitted
blockb, its number and the concatenation of all other omit-
ted blocks. Here all the information excdphas bit size
n? +n+ (n? &n) + O(logn) = 2n* + O(log n), and this
information includesy(n). Therefore, the complexity of
(z(n),y(n)) does not exceedl (bly(n)) +2n2 + O(logn).

On the other hand, the complexity @f(n),y(n)) is 2n? +
n + O(1). Comparing the two inequalities, we see that
K (bly(n)) > n <0O(logn). Lemma 2 is proved.

Lemma 3 There exists some constarguch that
K (blz(n)) > n &clogn

for anyn and for any bloclk that was omitted at-th step
of the construction.

(as shown above) exactly the selected blocks, and we are

done. Soy is simple relative tae. But this is impossible,
because in this case the péir, y) will have complexity at
most2n? + O(log n) (instead oRn? + n).

In the argument above we were quite vague aliout

Indeed, recall that<(z(n)|y(n)) = O(logn) by our
assumption; note also thadt (bly(n)) < K(blz(n)) +
K(z(n)ly(n)) + O(logn). Hence,n < O(logn)
K(bly(n)) < K(blz(n)) + K(z(n)ly(n)) + O(logn)

A

notation, so let us repeat the same argument more formallyK (b|z(n)) + O(logn). Lemma 3 is proved.



Lemma 4
K(e(n)|z(n)) = O(logn).

Proof. Lemma 1 implies that for bign the value
K (b|z(n)) is less thann/2 for any selected block;
Lemma 3 implies that for big the valueK (b|z(n)) is big-
ger thann /2 for any omitted bloclb. Therefore, knowing
z(n) andz(n) we can reconstruct the list of selected blocks
just enumerating the stringssuch thatk (s|z(n)) < n/2
until n blocks fromz(n) appear. Sincd((z(n)|z(n))
O(logn) by assumption, we need onfy(log n) additional
bits to reconstruat(n) from z(n). Lemma 4 is proved.

Sincey(n) is determined by:(n) ande(n), we conclude
that K ((z(n), y(n))) is 2n* + O(logn) but it should be
2n? +n + O(1). The contradiction shows thatandy do
not have a greater lower boung.

Let us mention some other properties of the semilattice

R.
1. The operations “infinum” and “supremum” do not sat-

isfy the distributive law even when they are defined. Indeed,

consider sequencasandb wherea,, andb,, are random in-
dependent strings of length Letc, = a, ® b, (bitwise
addition modul@). Then

sup(inf(a, b), ¢) # inf(sup(a, ¢),sup(b, ¢),

sinceinf(a,b) = A (whereA is the minimal element of
the semilattice), so the left-hand side is equal tehile the
right-hand side is equal taip(a, b).

Moreover,

inf(sup(a, b), ¢) # sup(inf(a, ¢), inf(b, c),

since left-hand side is equal¢@nd right-hand side is equal
to A.

2. For any two elements andy in R there exists
their difference, i.e., a sequengesuch thatsup(y, 2)
sup(y, x) andinf(y, z) = A. (Indeed, letz,, be a shortest
program that computes, giveny,.)

Difference is not defined uniquely; for instance,zif
andy,, be random independent strings of lengttbothz,,
andz,, @ y, are differences af,, andy,,.

The semilatticeR is only one of the possible refinements
of the intuitive notion % is simple relative tg". Here is an-
other possibility. Let us fix a functiofi(n) = o(n); assume
thatz andy are sequences of strings such thaf = O(n),
lyn| = O(n). Definex <; y asK(z,|y.) = O(f(n)).
One can show that this definition gives a semilattice with
similar property (no greatest lower bound; however, the
proof is more difficult and is omitted).

3. Common and mutual information

The semilatticeR is a useful tool to analyze the amount
of common information shared by two strings.

Let z andy be two strings. Bymutual information
in z and y we mean the valud(z : y) K(z) +
K(y) © K({xz,y)). (Sometimesl(z : y) is defined as
K (y) <K (y|x), butthese quantities differ only iy(log n)

for strings of length at most, see [5].)

Theorem3 Letx = z1,22,... be
elements ofz.

@If z = 21,29, ...

andy = Y1,Y2,---

is a lower bound of andy then

K(zy) < I(xy : yn) + O(logn). 1)
(b) If z = 21, 29, ... is alower bound ofc andy and
K(z,) =I(zy, : yn) + O(logn). (2)

thenz is the greatest lower bound efandy in R.

Proof. (a) Sincez < z,

K((@n,20)) = K(20) + K (2a]2,) = K(2,) + O(log ).

K(zn) = K((zn, 2n)) + O(logn) =
= K(2n) + K(2n|2n) + O(logn). 3)
Similarly
K(yn) = K((:’/m Zn)) + O(log n) =
K(zy) + K(yn|zn) + O(logn). 4
On the other hand,
K((zn,yn)) < K(2n) + K(2nl2n) +
+K (yn|zn) + O(logn). (5)

since we can reconstruct the péif,, y,,) from z,, and pro-
grams that transform, into z,, andy,,. Combining the last
three inequalities(B) + (4) <(5)], we get the statement (a).

Let us prove the part (b) now. Assume thais a lower
bound forx andy and the inequality (1) turns into equality
(2). Letz’ be any other lower bound far andy. Consider
the sequence” defined as:;! = (z,,z),). Itis the least
upper bound o andz’ (Proposition 1). Thereforg’ < x
andz" < y. Applying (a) toz" we see that

K(zp) = K((2n,2)) < I(@n : yn) + O(logn)

:yn) = K(zn) + O(logn), so
K({zn,2},)) < K(zn) + O(logn). On the other hand,
K((zn,2},)) = K(z,) + K(2,|2) + O(logn), therefore
K(z}]2,) < O(logn) andz' < zin R.

If two sequencex = z1,z>,... andy = y1,¥2,...
have the greatest lower bouad = 2, 25,..., one may
call K(z,) “the amount of common information in strings
z, andy,”. However, this is not a good definition since
the good one should use only strings andy,, but not the
whole sequences andy.

By assumption,/(z;,



4. Examples where common information is less
than mutual information

This theorem implies that sequencgs= a;,as,...
andb = b;,b5,... haveA = A, A,... as their greatest
lower bound. (Here\ denotes an empty string.) Indeed, if

Informally speaking, strings andb haveu-bit common K (cx|an) = O(log n) andK (c,|b,) = O(log n) for some
informationc if K(c) = u, K(c|a) ~ 0, andK (c|b) ~ 0.  Sequence = ci,cs, ..., thenk(c,) = O(logn) accord-
We know (Theorem 3(a)) that the amount of common in- iNg to Theorem 4.
formation in two Strings is not Iarger than the mutual in- Proof. The proof of Theorem 4 is based on a Simp]e com-
formation of this strings. A natural related question is the pinatorial observation.
following one: can common information be far less than

mutual information? Lemma 5 Consider a bipartite graph withk vertices

_This question was positively answered byads and 4 on the left and verticesl, ..., ! on the right. As-
Korner [4]. They found out that there are pairs of strings sume that this graph does not contain cycles of length

a andb such thatl (a : b) is big but nevertheless any string Then the following bound for the number of edg&s is
c that is simple relative to both andb (both K (c|a) and valid (we assume that < [):

K (c|b) are small) is simple (has smdil(c)).

Their construction uses ideas from Shannon information
theory. Another construction was suggested in [2] (see [3]
for details). Here we present a third way to construct exam-

e k<Vi=|E| <2

ples of that kind.

Consider a finite fieldr;,, of cardinalityd close to2™.
(Any field of size 279 will work, so we may use
the field of cardinality2™ or the fieldZ/qZ whereq is
a prime number betwee2* and2"+!.) Consider three-
dimensional vector space ovél,. Any non-zero vector
(f1, f2, f3) generates a line (by “line” we mean a line go-
ing througho, i.e., one-dimensional subspace). Two lines
generated byfi, f2, f3) and(g1, g2, g3) are called orthog-
onal if fig1 + fag2 + f393 = 0. Now consider two random
orthogonal lines: andb (i.e. pair of two orthogonal lines
(a, b) which has the greatest possible complexity. We claim
thatI(a : b) is significant but there is no stringwhich is
simple relative to botla andb (unlessc is simple).

More precisely, consider the se&? {{a,b)

a andb are orthogonal lings This set containgd® + o(d?)
elements (there a#¥ + o(d?) lines and each line is orthog-
onal tod + o(d) lines). ThereforeQ) contains a paifa, b)
whose complexity idog(d®) + O(1) = 3n + O(1). (We
assume that elements 6f, are encoded by binary strings
of lengthn + O(1), so we can speak about complexities.)
Note thatK (a) < 2n + O(logn) since there are about
22" lines; moreoverK (bla) < n + O(logn) sinceb is
one of 2" lines orthogonal tad. Recalling the inequal-
ity K({a,b)) < K(a) + K(bla) + O(logn), we conclude
that K (a) = 2n + O(logn) and K (bla) = n + O(logn).
For similar reason& (b) = 2n + O(logn) and K (a|b) =

n + O(logn). Therefore/(a : b)) = n + O(logn).

Theorem 4 Let {(a,,b,) be a random pair of orthogonal
lines in the three-dimensional space ovéy. For any se-
guence of strings,,

K(cp) < 2K (cplan) + 2K (cp|byn) + O(logn)

assuming that,, has polynomialin n) length. [The con-
stant inO(log n)-notation does not depend an|

o k> V1= |E| <2kVI

Indeed, for each elemenbn the left consider the sak,
of its neighbors on the right; let, be the cardinality ofv,.
The intersectionv, N N, (for v # w) contains at most
element, otherwise we get a cycle of lendgthAssume that
k < /1. Consider the union of alV,; it has at least

n1 +n2+...+nk<:>Z|NiﬂNj|
i<j

elements. The number of paifs j) is less thak? < [ and
the union has at mostlements, therefore

|E| =n1+ns+...+n, <21

The first statement is proved. It implies that for= /1
the average number of neighbors for vertices on the left is
at most2v/1. We use this observation to prove the second
part of the lemma.

Let & > /1. Considery/1 vertices on the left having
maximal neighborhoods and delete all other vertices on the
left; this makes the average number of neighbors bigger.
But we know that it does not exce@d/l. The same is true
for the initial graph, thereforg| < k - 2v/1. Lemma 5 is
proved.

This lemma will be applied to a bipartite graph whose
vertices (both on the left and on the right) are lines; edges
connect pairs of orthogonal lines. It is easy to see that this
graph does not contain cycles of length(if a L b L
¢ L d L athena,c andb,d generate two orthogonat
dimensional subspaces irBalimensional space).

Now we are ready to prove Theorem 4. As we know,
K(a) = K(b) = 2n and K ({(a,b)) = 3n (from now we
omit O(logn)-terms for brevity). LetK(c|la) = p and
K (c|b) = ¢; we may assume that< ¢q. We want to get an



upper bound fom = K(c). First, let us computd (alc) Here the same argument (using Lemma 5) cannot be applied
andK (blc): directly, because now graph may hatreycles. However,
the counting argument can be applied after an appropriate
K(ale) = K({a,c)) & K(c) = modification, because the intersectidh N N,, is small
= K(a) + K(cla) ©K(c) = 2n + p &m. (only few lines are orthogonal to both linesandw; only
few affine lines intersect two given affine lines). (We omit
the details.)
Let us note that in these examples somestill have
more information about, andb,, than one could expect.
For example, if in (b) we consider the intersection point

Similarly, K (b|c) = 2n + ¢ <m. Consider the seP of all
lines whose complexity relative todoes not exceeln +

p &m; this set contains line and has cardinalitg®”+r—m
(up to a polynomial imm factor). Similarly we get a set
() that contains lines whose complexity relativectoloes
not excee®n + g <m; this set has cardinalitg®™+7=". pn Of an andby, then K (py) ~ 31y If(a’?m ~ 2n,
Consider a bipartite graph whose edges connect orthogonaf((b"|p”) % 2n. There are some;, andb;, with the same

] ! ~ ! ~ ! ! ~

lines fromP and@. This graph does not haviecycles, so  complexities ((a;,) ~ 4n, K(by,) ~ 4n, K((ay, b)) ~

the number of edgdE| does not exceed 7n) for which there is n@,, with similar properties.
Remarks. (1) Instead of intersection point we could con-

P2 i (20 4 pesm) < 2n+qm. sider two-dimensional affine subspace that contains both
= 2 ’ lines.
92ntp—m | /92ntq—m if 2n + p &m) > 2n + q@m_ (2) For (a) one also can fingd that contain more in-
- 2 formation abouta,, andb,, than one could expect. (The
On the other hand, the p4r, b) represents one of the edges Way to construct such @, was pointed by Finkelberg and
of that graph. Iz is known, we can enumeratg Q andE, Bezrukawnikov.) . _ .
so the pair(a, b) may be described by its numberfand This effect (some: contains more information about

3n = K((a,b)) < K(c) + log|E|. Therefore, the two  andbthan one could expect) is analyzed in the next section.
bounds forl E| imply
3n<m+ (2n+qgem) =>n<gq 5. More about common information

(the first one) and Let us reformulate our informal definition of common

information. We say that strings andy havewu-bit com-
mon informationz if K(z) < u, K(z|z) < K(z) &u,

(the second one). We have to prove thak 2p+2q (recall ~ 2ndK(ylz) < K(y) <u. (Itis easy to see that all three

that logarithmic terms are omitted). In the second case it "egualities in fact are equalities in that case.)
is evident; in the first case one should note tha) < The question wheth_er suchexists is a speugl case of
K(cla)+ K(a) <p+2n<p+2¢<2p+2q g a more general question: we may ask for givem, w
whetherthere is a stringsuch thatx'(z) < u, K (z|z) < v,
Remark. The same example may be reformulatedandK(y|Z) < w. The set of all triplegu, v, w) for which

in several ways. Replacing liné by the orthogonal  gych a- exists could be considered as “complexity profile”
plane b+, we may say that(a,b) is a random pair  fihe pairz, y.

(line a, planeb going througte). We may also switch from
projective plane to affine plane and say tHatbd) is a
random pair{pointa on the affine plane, liné that goes
througha), etc.

There are several other examples of pairs having no com
mon information. Here are two of them:

1
3n§m+(2n+p<:>m)+§(2n+q<:>m) =>m<2p+gq

Technically speaking, we should consider sequences of
strings instead of individual strings. Leat = x1, o, ...
andy = y1,y2,... be two sequences such that,| =
O(n) andly,| = O(n). (Only sequences satisfying these
“‘conditions will be considered in this section.) A triple of
reals(u, v, w) is calledz, y-admissibleif there exists a se-

Theorem 5 (a) Let (an, b,,) be a random pair of orthogo- ~ duUeNcez = z1, 2, ... such that
nal lines in four-dimensional space ovél,. For any se-
quence of strings,, K (2,) < un + O(logn),
K(xp|zn) < vn+ O(logn), (6)
K(cp) < 3K (cplap) + 3K (cp|byn) + O(logn) K (ynlzn) < wn + Ologn).
assuming that,, has polynomia(in n) length.

(b) The same is true ifa,, b,,) is a random pair of in- The set of alle, y-admissible triples is denoted By, ,,.
tersecting affine lines (one-dimensional affine subspaces) inThe larger isM, ,, the more informatior: andy share.

three-dimensional affine space oVéy. Here is a trivial example: assume that is a random



string of lengthn andy,, = z,,. Then
M‘Pyy = {(u,v,w): u+v Z ]-, u+w Z ].}

If z,,,y, are random independent strings of lengttthen
M3 4, is much smaller:

Mgy = {(u,v,w) | u+v > 1, u+w > 1, u+v+w > 2}.

As we shall see, the values &f(z,,), K (y,) andI(z, :
y») do not determine the sét, ,, completely.

For simplicity we restrict ourselves to one special case:
we assume that

K(zp) =2n+ O(logn),
K(yn) =2n+ O(logn),
I(zy, : yn) = 3n+ O(logn).

(7)

Consider the following two sets of triples. The first one,
called M., is defined by the inequalities

vtv4+w>3, ut+ov>2, utw>2 (8)

The second one, callet,;,, contains all the triples from
M.« satisfyingat least oneof the inequalities

ut+v+w>4, u+v>3 utw>3. (9)

Theorem 6 (a) For any sequences, y satisfying(7)
Mmin g Mm,y g Mmax-

(b) There exist sequencasy satisfying(7) such that
Mm,y - Mmin-

(c) There exist sequencas y satisfying(7) such that
Mm,y = Mmax-

Proof.

(a) Using the inequalitied ((z,,,yn)) < K(z,) +
K(zy|2n) + K (yn|zn) + O(logn) andK (z,) < K(z,) +
K(zy,|2zn) + O(logn) it is easy to show that for ak, y-
admissible triples it holds

vtv4+w>3, ut+ov>2, utw>2 (20)

Thus, for everyx,y the setlM, , is included in the set
M ,.x, defined by the inequalities (10).

Let us prove thatMmin C My 4. Let (u,v,w) bein
M pin. Then the triplgu, v, w) satisfies the inequalities (8)

Otherwise, if sayv > 2, let z consist of the first
min{2, u} bits of y. ThenK (y|z) < (2 ©min{2,u})n +
O(logn) < wn + O(logn), as the triple(u,v,w) satis-
fies (10). AndK(z|z) < K(z) < 2n + O(logn) <
vn + O(logn).

2)u+ v > 3. If u < 2 letz consist of the firsun bits
of y. To find z given z is suffices to know the remaining
(2 ©u)n bits ofy and the minimum program to compute
giveny (havingn bits). So the total number of bits needed
to findz givenu is (2<u)n+n+0(logn) < vn+0O(logn).
And K (y|z) < (2 ©u)n + O(logn) < wn + O(logn).

Otherwise (ifu > 2) let z be the concatenation of
and the firsinin{u <2, 1}n bits of minimum progranp to
computer giveny. To obtainz given z it suffices to have
the remaining: < (u <2)n < vn bits of p.

3)u +w > 3. Similar to 2).

(b) Letz,, = (p,q), yn = (p,r), Wherep, ¢, r are ran-
dom independent strings of length It is easy to show that
that the set ok, y-admissible triples is equal /.. This
fact agrees with our intuition that andy have as much
common information as possible (under restriction (7)).

(c) This is the most interesting part of the theorem; the
proof uses methods from [3].

Lemma 6 There arex, y satisfying (7) such that for any
there is naz satisfying the inequalities

K(zn) + K(2n|zn) + K(ynlzn) < 4n (11)
K(zn) + K(zn|zn) < 3n (12)
K(n) + Kgalsn) < 30, (13)

Proof. Let us fix naturak. As usually we will omit the
subscriptr in x,, y,, etc.

Let U be the set of all strings of lengttn + C'logn,
where constant’ will be chosen later. Let

Ur = {uelU]|K(u)<2n}
V. = {(z,y) |z,y €U, K({x,y)) < 3n}
Vi = {(z,y)|z,y € U, there isc satisfying

the inequalities (11), (12), and (13)

We will show that the seU x U) \ [(U; x U ) UV U V4]
is non-empty. Any paifz, y) in this set will satisfy the fol-
lowing:

1) K(z),K(y) = 2n + O(logn) (as bothz andy are in
U\ Uy),

and at least one of the inequalities (9). So consider three2) K ({x,y)) > 3n (as{z,y) ¢ V), and

cases.

Du+v+w >4 If v,w < 2letz be the concatenation
of the first(2 <w)n bits of x and the firs{2 <w)n bits of y.
Sinceu+v+w > 4, we havdz| = (2ev)n+ (26w)n <
un. To obtainz given z we need the remainingn bits of
x and the numbers, vn, wn, SOK (z|z) < vn + O(logn).
Analogously,K (y|z) < wn + O(logn).

3) there is noz satisfying the inequalities (11), (12),
and (13) (agz,y) & V1)

Thus, to prove the lemma it suffices to show that there is
(z,y)In (U x U) \ [(U1 x Uy) UV UV;] of complexity at
most3n + O(logn).

The non-emptiness ¢t/ x U) \ [(U; x Uy) UV U V4]
is proved by counting arguments. We hatg = 24"n®,



|U1| < 227, |V| < 23", To obtain an upper bound f¢v/ |
let us count the number of paits, y) for which there isz
satisfying the inequality (11). For arky, [, m there are at
most2*2!2™ pairsz,y such that there is with K(z) =
k, K(z|z) = I, K(y|z) = m. And the number of triples
k, 1, m satisfying the inequality + [ + m < 4n is at most
(4n + 1)3. Therefore|V;| < (4n + 1)32%7. It follows that
if C is big enough, thefi/| = 24"nC > 22(27) 4 23n 4
(4n + 1)32%" > |U; x U] + |V| + |V1|, and therefore the
set(U x U) \ [(Uy x Uy) UV U V3] is non-empty.

Let (z,y) be the lexicographically first pair ifU x U) \
[(Ul X U1) uvu VQ]

Lemma 7 K({z,y)) < 3n+ O(logn).

Proof. To identifyz, y it suffices to knows and the set#/,
V andV;.

Let g9 be the universal conditional description method.
For anyk + 1 < 3n let W ; be the set of allp, ¢) such
that|p| = k, |¢| = I and bothgo(p, €) andG(¢o(p,€), q)
are defined. To identify; it suffices to know: and the sets
Wi, forall k,1 such tha + 1 < 3n.

Therefore;z, y can be retrieved from and the set#/;,

14 andeJ, k+1<3n.

The elements of all the sefs;, V' and W}, can be
enumerated given, therefore to get the lists of all these
sets it suffices to know and the numbem = |Uj| +
V14> kti<sn |[We| (Qivenn we enumerate elements in
all these sets untik elements are enumerated). We have

|U1| <227, V] <237, |Wiy| < 2F2! < 237,
Therefore

U+ VI+ D Wil < (3n+3)2°",
k+1<3n

and

K((z,y) <log([Ua| + [V|+ Y [Wia]) +
k+1<3n
+2logn + C < 3n+ O(logn).

O

This finishes the proof of Lemma &,

We claim thatV/,, ,, = My, fOr any sequence satisfying
Lemma 6. Assume for the contrary that the&&t ,, \ Mmin
is not empty, that is there is a triple, v, w) satisfying the
inequalities

vtvt+w<4d ut+v<3 utw<<3,

for which there exists a sequenesatisfying (6). Then for
n large enough we get

K(z) + K(zn|2n) + K(yn|zn) < un+on+wn+
+0(logn) < 4n,

K(Zn) +K($n|zn) < un+ovn+
+0(logn) < 3n,

K(zp) + K(ynlzn) < un+wn+

+0(logn) < 3n.

The contradiction shows thafl, y, = Mumin. O

The proof of Theorem 6(c) is non-constructive, it gives
no “example” of the paifx,y) with Muyin = Mg ,. AN
example would be a set,, of low complexity (O (logn))
such that any random pdit.,,, y,,) in this set satisfies The-
orem 6(c). We do not know whether such a proof exists.

In Section 4 we presented several examples of sequences

x,y whose common information is less than mutual infor-
mation. It would be interesting to find the complexity pro-
file for these examples. Unfortunately, we know only few
things. We present here known facts about random orthogo-
nal lines in three-dimensional space. kety be sequences
mentioned in Theorem 4. Le¥ be the setM, . Let M
be the set

{{u,v,w): v +v/2 +max{w,v/2} > 3,

u+w/2 + max{v,w/2} >3} N Mpax.

Note that both inclusion8/min C M C M.« are proper
(for instance, the tripl¢1.5,1,1) isin M \ M, and the
triple (1,1,1) isin Mpyax \ M)

Theorem 7 M C M.

Proof. Consider the following bipartite grapltr
(V', V" E). LetV'[V"] be the set of all lines having com-
plexity at mostK (z|z) [K (y|z)] conditional toz. Put an
edge betweert € V' andg € V" if # is orthogonal tqj.
As (z,y) is in E and the elements il can be enumerated
giveng andz, we get

3n < K((z,y)) <log|E|+ K(z) + O(logn).
If \/]V"] <|V'| Lemma5 get
2on=K()=0lem) < B < 2V|/[V7],
and if \/[V"| > |V'| Lemma 5 get
gin—KE=0lesn) <|B| < 2|V,
Thus, anyway we have

93n < 2K(z)+0(1ogn) .3 /|V//| max{ /|V//|’ |V'|}.



The number of elements i’ andV" is at mostX (#12)+1
and2XWl=)+1 respectively, and((z) < un + O(logn),
K(z|z) < vn+O0(logn), K(y|z) < wn+0(logn). There-
fore,

3n < un + 0.5wn 4+ max{0.5w,v}n + O(logn),

thus3 < u + 0.5w + max{0.5w, v}.
In the similar way we can prove that< u + 0.5v +
max{0.5v,w}. o

Theorem 7 is true for any choice of the fidif] (see The-
orem 4). However, the séif may depend oi#;,. The fol-
lowing theorem assumes that the fidlg has sizep> where

p is a prime number; we don’t know whether it is true for

other fields.

Theorem 8 Assume that all fields;, are of sizep? where
pn, are primes. Thed/ contains the triplg1.5,1, 1), and,
therefore,M # Mpin.

Proof. Suppose thaj is a squareg = p? (for all n). Then
we claim that the set/, ,, has the point1.5, 1,1), which
is on the border of\/.

Leta € Fj be a primitive element of;, over F,,. Thus
any element inF, can be represented in the form+ sa
for somet,s € F,. We can choose in such a way that,

moreover, any element if, can be represented in the form

t+ sa® for somet, s € F,,. Why? The multiplicative group

of the field F, is cyclic (see [7, page 184]), therefore the

square of any its generator does not belongjo Let us
take asa any such generator. Thert = e + fa, where
e,f € Fpandf # 0. Thusa is a linear combination of
1, o* with coefficients from#},, and we are done.

Let us findz of complexity 1.5n + O(logn) such that
K(z|z) = n + O(logn), K(y|z) = n + O(logn). Let
(a,b, c) be the leading vector of (defined up to a multi-
plicative constant). We may assume thag 0, since the
number of lines for whicke = 0 is equal tog + 1, there-
fore the complexity of any such line is at masg (g + 1) +
O(logn) < n+ O(logn). So letc = 1. By the same rea-
son we may assume that the leading vector of thegire
(a’,1,¢"). Asy is orthogonal tar, we getc' = <{aa’ + b).

We haven = 21 + ra, a’' = 22 + ta, wherezy, zo,7,t €
F,. Findz3, s € F, such thab = ©zara + 23 + sa?. This
is possible by our assumption en Letz = (z1, 22, 23).
Obviously,K (z) < 3logp+ O(logn) = 1.5n + O(log n).
Givenz, r ands we can finde, thereforel( (z|z) < K(r)+
K(s) + O(logn) < 2logp+ O(logn) < n + O(logn).

Let us prove thaf (y|z) < n + O(logn). Itis easy to
see that

= &(z122 + zita+rta® + 23 + sa?) =
= (5122 + 21ta + 23 + (rt + 8)a?).

Therefore, givere, ¢t andrt + s we can findy. Hence
K(ylz) < K(t) + K(rt + s) + O(logn) < 2logp +
O(logn) < n+ O(logn).

So, if we let for instanceg, = 22["/2 we result with
x,y for which the set\/ has the poin{1.5,1,1). And we
do not know whether this is the case for (sayg 22(7/21+1,

O
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