Non-reducible Descriptions for Conditional
Kolmogorov Complexity

Andrej Muchnik®, Alexander Shen?, Nikolai Vereshchagin?,
and Michael Vyugin*

! Institute of New Technologies*

muchnik@lpcs.math.msu.su
2 LIF CNRS, Marseille, France, Poncelet laboratory,
CNRS, Institute of Problems of Information Transmission, Moscow™**
alexander.shen@lif.univ-mrs.fr
3 Moscow State University* * *
ver@mccme.ru

4 Moscow State University'

Abstract. Let a program p on input a outputs b. We are looking for a
shorter program p’ having the same property (p’(a) = b). In addition, we
want p’ to be simple conditional to p (this means that the conditional
Kolmogorov complexity K (p’|p) is negligible). In the present paper, we
prove that sometimes there is no such program p’, even in the case when
the complexity of p is much bigger than K (b|a). We give three different
constructions that use the game approach, probabilistic arguments and
algebraic (combinatorial) arguments, respectively.

1 Definitions and Statements

Let a and b be binary strings. Consider programs p such that p(a) = b (the
program p on input a outputs b). What is the minimal length of such a program?
If the programming language is chosen appropriately, this length is close to
K (bla), the conditional Kolmogorov complexity of b given a. [We will ignore
additive terms of order O(logn) where n is the maximum length of the strings
involved. With this precision all the versions of Kolmogorov complexity (the
plain one, the prefix one etc.) coincide.]

To avoid references to a specific programming language we will consider “de-
scriptions” instead of programs. A string p is called a conditional description of
a string b given a if K (bla,p) is negligible. Here K (b|a,p) stands for the condi-
tional complexity of b given the pair (a,p). We will specify what is “negligible”
in each case.

* Supported by RFBR grant 04-01-00427.
** Supported by STINT foundation, Uppsala university (Sweden), Royal Holloway
College (UK), RFBR (grants 02-01-22001, 03-01-00475, NSh-358.2003.1).
*** Supported in part by the RFBR grants 02-01-22001, 03-01-00475, NSh-358.2003.1.
 Supported in part by the REBR grants 02-01-22001, 03-01-00475, NSh-358.2003.1.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 308-3I7] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Non-reducible Descriptions for Conditional Kolmogorov Complexity 309

For given a and b consider all strings p such that K (b|a, p) ~ 0. One can easily
verify that the length of any such p is at least K (b|a). This bound is tight. (Both
assertions are true with O(logn) precision; the same precision is required in the
equality K (bla,p) =~ 0.)

We say that a description p’ is a simplification of a description p if K (p'|p) ~ 0
with logarithmic precision. The relation K (p'|p) < ¢ is not transitive for a fixed
e: K(p'|p) < e and K (p"|p) < e imply only K (p"|p) < 2¢ + O(logn). However,
this relation resembles a preordering on strings and we are interested in the
structure of the set of all conditional descriptions (for given a,b) with respect to
this “pre-ordering”.

The string b itself is a conditional description of b given a. Muchnik [I] has
shown that (among all descriptions of b relative to a) there exists a description
of minimal length (= K (bla)) that is a simplification of b. We will prove that
this is not true in the general case (for arbitrary description p instead of b): for
some a,b there is a description p of complexity much larger than K (b|a) that
has no simplifications of length ~ K (b|a).

The exact statement is as follows:

Theorem. There are constants ¢; < ¢ < ¢3 < ¢4, ¢c and € > 0 such that for all
sufficiently large n there exist a, b, p of length at most c4n having the following
properties:

(a) K (bla,p) < clogn (“the string p is a conditional description of b given a,
with logarithmic precision”);
(b) K(bla) < e1n (“the conditional complexity of b given a is small ...”);
(¢) K(p) = can (“...compared with the complexity of p”);
(d) there is no string p’ such that K (p') < can, K(p'|p) < en and K (bla,p’) <

en (“...but p has no simplifications of complexity can”).

Note that we are using linear upper bounds on K (p'|p) and K (bla, p’) instead
of previously claimed bounds O(logn). This makes our statement stronger: there
exists p having no simplifications p’ even with linear upper bounds on conditional
complexities. Note also that complexities K (a), K(b) of strings a, b provided by
Theorem 1 are ©(n) (and hence |al, |b] = ©(n)). Indeed, if K(a) < én where § is
less than both € and ¢3 —¢1, then p’ = b is a counterexample to (d), since (a) and
(b) imply K (b|p) < én+ O(logn) and K (b) < (c1 + 6)n + O(logn), respectively.
And if K(b) < 6n (where § < €), then the empty p’ is a counterexample to (d),
since (a) implies K (bla) < 6n + O(1).

Let us mention also that for all our examples of strings a, b (except for the last
example in Section @ where random points and lines are used) the inequality (b)
holds in a stronger form: K (b) < cin.

In what follows we give three different proofs of the theorem, using three
methods of constructing objects with given complexity properties (games, prob-
abilistic arguments and combinatorial estimates).

In fact, our theorem is stated in a simple, but not the strongest, form. For
example, our proof shows that for all ¢; < ¢ < ¢3 < ¢4 there exist ¢ and

310 A. Muchnik et al.

¢ satisfying the statement (we need only that e is much less than differences
ca —c1 and c3 — ¢2).

Recently M. Ustinov has shown that for all a and b (except for trivial cases
K(a) ~ 0 and K (bla) ~ 0) there exists a program p that transforms a to b and
cannot be simplified. This result was further improved by An. Muchnik (see [2]).

The authors are grateful to all participants of Kolmogorov seminar of the
Department of Mathematics (Matematical Logic and Theory of Algorithms Di-
vision) at Moscow University.

2 Game Approach

Consider the following game we play against an adversary.

Let P, P’, A and B be finite sets (as we see later, they correspond to strings p,
P, a, b respectively). On our moves we construct a partial function {: Px A — B.
At the start of the game the function £ is empty, and on each move we may define
the value of £ at one point (once defined values cannot be changed later). Or we
may skip the move, that is, we may leave £ unchanged.

The adversary on his moves constructs multi-valued functions ¢: P — P’ and
¥: P’ x A — B. That is, the values of ¢ are subsets of P’, and the values of v
are subsets of B. Initially ¢ and ¢ are empty (all their values are empty). At
each move the adversary may add one new value to ¢ (adding a new element
to ¢(p) for some p) or ¢ (adding a new element to ¥ (p’, a) for some p’, a). The
existing elements cannot be removed. The adversary also may skip the move.

The adversary must obey the following rules: the function ¢ takes on every
argument at most « values (i.e., #¢(p) < « for any p € P) and the function
takes on every argument at most 3 values (#¢(p’,a) < f for any p’, a).

Players’ moves alternate. Obviously, each player can make only finite number
of non-trivial moves (moves that change the functions). Thus after a certain move
all the three functions remain unchanged. The result of the game is defined as
follows: we win if there exist p € P, a € A and b € B such that (p,a) = b
and p, a, b are not “covered” by the adversary: the latter means that there is no
P’ € ¢(p) such that b € ¥ (p/, a).

So the game is determined by the sets A, B, P and P’ (actually, only their
cardinalities matter) and the parameters « and (. We represent the function
£ as a table with #P rows and #A columns. The cells of this table initially
are empty; they are filled by elements of B (each cell may contain at most one
element).

The adversary fills the table for function 1. It has # P’ rows of the same length
#A as in our table. Each cell may contain up to § elements of B. The adversary
also constructs the function . It is convenient to represent this function by
arrows going from row p of our table to all rows of adversary’s table that belong
to ¢(p). The outdegree is bounded by a. We win if our table has a non-covered
cell. A cell (p,a) is covered if its row is connected by an arrow to a row of
adversary’s table that has in the same column the same element of B (and, may
be, some other elements). See Fig. [l

Non-reducible Descriptions for Conditional Kolmogorov Complexity 311

A

Pl

§

Fig. 1. Cells of our table £ and adversary’s table v are filled with elements of B; each
row of £ has at most a outgoing edges, each cell of ¢ contains at most § elements

The proof is based on the following simple observation:

Lemma. If o - 8 < #B and - #P + (- #A - #P' < #A - #P then we have a
winning strategy in the game.

Proof of the lemma. The first inequality guarantees that if £ is not yet defined
on a pair p,a, then we can choose a value b = £(p, a) so that the cell (p,a) is
not covered (at the current step). Indeed, for each of at most «a values p’ € p(a)
there exist at most 3 values b € ¥(p’, a), so there exists b that is different from
all those values.

Choosing b in this way (assuming that there are empty slots in &-table), we
guarantee that after each our move there exists a non-covered cell (p,a). Our
move is non-trivial only when the previous adversary’s move is non-trivial. The
second inequality guarantees that the number of cells in £-table is greater than
the number of adversary’s non-trivial moves (so the empty slots do exist). Indeed,
for each of #P arguments the value of ¢ may be changed at most « times and
for each of #A-# P’ pairs (p', a) the value of 1 may be changed at most § times.

Hence after every adversary’s non-trivial move we can find an empty cell in
&-table and enter a value in it so that the cell becomes non-covered. The lemma
is proved.

Now we prove the theorem using Lemma. Fix some positive rational constants
c1 < co < c3 and € > 0 such that ¢ is small compared with ¢y, co —c1 and ¢3 — co.
Let B be the set of all strings of length at most cyn, let P’ be the set of all strings
of length at most con and let P be the set of all strings of length at most c3n.
The set A can be chosen in many ways, as we have almost no restrictions on a.
For example, let A be equal to B.

Let us fix the adversary’s strategy now. Assume that the adversary includes in
©(p) (one by one) all p’ € P’ such that K (p'|p) < en, and includes in ¢ (p/, a) all

312 A. Muchnik et al.

the strings b € B such that K (b|a,p’) < en. One can do this effectively given n, as
the function K is upper semi-computable (that is, the set {{z,y,1) | K(z]y) < I}
is recursively enumerable). This strategy does not violate the rules provided
a=f3=2"

Let us verify that the conditions of the Lemma are satisfied:

a2 oan
(we assume that ¢ is less than ¢;/2), and both terms in the sum
o - #P + ﬂ . #A . #P/ ~s 9Entcan + gentcintcan

are much less than #A - #P = 297Fe% (we also assume that € is less than
cs — ¢2). Therefore, by the Lemma, we have a winning strategy in the game.

The winning strategy is computable given n. Applying it against the adver-
sary’s strategy described above we obtain a function £ that is computable given
n (as the adversary’s moves are computable, so are ours). To be precise we
should write £, indicating the dependence on n; complexity of algorithm that
computes &, is O(logn) since &, is determined by n Since our strategy is a win-
ning one, there exists a cell (p,a) that is not covered after all non-trivial moves
are performed. (It depends on n in a non-computable way, as we do not know
which of the adversary’s moves is the last non-trivial one.)

Let b = &(p,a) be the element in the “winning” cell of our table. Then
K (bla,p) = O(logn). As the length of b is less than c¢;n we have K(b) <
cin + O(1). [This is O(1) larger than the upper bound in the theorem but can
be compensated by a small increase in ¢;.] As the cell (p, a) is not covered, there
is no string p’ of length at most can such that K (p|p) < en and K (bla,p’) < en.
This is weaker than required: we want the statement to be true for all p’ of com-
plexity (not the length) less than con. However it is easy to fix this. Replacing
p’ by its shortest description we increase K (bla,p’) and K (p'|p) by O(logn) and
this increase can be compensated by a small change in €. Note also that lengths
of all strings are at most c3n so we may use any ¢4 > c3. It remains to fix only
one problem: we want the complexity of p to be at least c3n and the rules of the
game do not provide any guarantee for this.

Let us change the game allowing the adversary at any step remove (=“mark
as unusable”) any element of P; the total number of removed elements should
not exceed #P/2, so at least half of elements in P should remain intact. In the
winning rule we require that element p has not been removed by the adversary.
For the modified game the statement of the Lemma is changed as follows: in the
right hand side of the inequality a - #P + (- #A - #P’ < #A - #P the term
#A-#P is replaced by #A - #P/2. The modified Lemma is still true: Indeed, if
we cannot perform any move then all the non-removed p’s have been used with
all a’s, thus we have done #A - #P/2 moves. And the conditions of the modified
lemma are still fulfilled for large enough n.

Other changes are as follows: we let P be equal to the set of all strings of length
at most csn + 2, and the adversary removes all elements of P with complexity
less than cgn. It is clear that at most half of elements could be removed, and

Non-reducible Descriptions for Conditional Kolmogorov Complexity 313

all the other bounds remain true. After this modification we know that for the
winning cell (p, a) the complexity of p is at least csn, and the theorem is proved.

3 Probabilistic Approach

Assume that finite sets A, B, P, P’ are fixed. (They will play the same role
as before.) Consider partial functions £&: P x A — B and multi-valued func-
tions ¢: P — P’ and ¥: P’ Xx A — B having at most « and 8 values (respec-
tively) for each argument.

Call a function ¢ a winning function (cf. the game described above) if for all
multi-valued ¢ and v (satisfying given bounds on the number of values) and for
every set P C P of cardinality at most #P/2 there exists a non-covered cell in
a row outside P, that is, there exist p € P\ P, a € A and b € B such that
&(p,a) = b but there is no p’ € p(p) such that b € Y(p', a).

In other words, a function ¢ is winning if we can put its values in the table
ignoring the adversary’s moves and be sure that we win. It is clear that with-
out loss of generality we may assume that the functions ¢ and v always take
maximum allowed number of values (if £ wins in this case, it wins always). If a
partial function £ is a winning one, then any its total extension is also a winning
function, so we consider only total winning functions in the sequel.

Thus if there is a winning function then there is a winning strategy. We will
use probabilistic arguments to show that if the cardinalities of A, B, P satisfy
certain requirements then a winning function exists. That is, we prove that with
positive probability a randomly chosen function ¢ is winning (assuming that all
total functions £ are equiprobable).

Let us estimate the probability that a random (total) function £ does not win
against given P, o and 4; it is enough to show that this probability is so small
that being multiplied by the number of different choices for P, ¢ and 1 it is still
less than 1.

Fix P, ¢ and v¢. We need an upper bound for the probability that for all
p € P\ P and all a the value b = £(p,a) (that is chosen independently for all
pairs (p,a)) is covered by the functions ¢ and . For a given pair (p,a) this
probability is less than «8/#B, and the number of different pairs is at least
#P - #A/2. So we obtain the upper bound

(af/#B)FTHA2,
Let us count now the number of different triples (P,p,v). We have at most
2#P choices for P, at most (#P')*#F choices for ¢, and at most (#B)7 #A#F’

choices for ¥. This gives a sufficient condition for the existence of a winning
function:

(aﬁ/#B)#P'#A/z LQ#P (#P’)a‘#P) (#B)ﬁ-#A#P’ <1

What does this condition mean? Assume that a8 < #B/2 (significantly larger
af do not satisfy the condition anyway). Let us focus on exponents in the in-
equality. The condition is true if all the exponents with bases greater than 1 are
much less than the exponent with base less than 1:

314 A. Muchnik et al.

#P < #P-#A)/2,
o #P < H#P-H#A)2,
B-#A-#P < #P-H#A)2.

The first condition is true almost always, the second one means that a < #A,
the third one means that (- #P < #P. We see that all these conditions
(together with the inequality o < #B/2) strengthen the conditions of the
Lemma above (It could be expected since winning functions are special cases
of winning strategies—those where all moves are fixed in advance and do not
depend on the adversary’s move).

In particular, a winning function exists if A, B, P, P’, o, 3 are chosen as
in the first proof of the theorem. Recall that we want K (&(p,a)|a,p) to be
O(logn). This can be achieved if the function £ has Kolmogorov complexity
O(logn), that is, the Kolmogorov complexity K (£) of the graph of £ is O(logn).
To prove that there is a winning function £ such that K(§) = O(logn) we
can use the following (very general) argument: By a very long (but finite)
exhaustive search we can check whether a given function is winning or not
(checking all P, ¢ and). Thus we can probe all the functions ¢ in some
natural order until we find the first winning one. To run this algorithm we
need only to know n, hence the first winning function has Kolmogorov complex-
ity O(logn).

The second proof of the theorem is completed.

What is the advantage of this (more complicated) proof? It shows that the
theorem can be strengthened as follows: for every oracle X there exist p, a, b sat-
isfying conditions (a)—(c) of the theorem (unchanged, without the oracle) such
that there is no p’ for which both KX (p'|p) and K~ (bla,p’) are less than en.
Indeed, our winning function beats any adversary’s strategy and its contruction
(and the inequality K (bla,p) = O(logn)) does not depend on the enemy’s strat-
egy. [Instead of relativizing the Kolmogorov complexity by an oracle one can add
any string as the extra condition in K (p'|p) and K (b|a,p’).]

4 Algebraic Construction

Although the proof in the previous section allows us to find the winning function
by an exhaustive search, this search could be very long. We would like to have
a more “explicit” example of the winning function. To this end we formulate
certain conditions that guarantee that a function £: Px A — B is a winning one.
Then we will explicitly present a winning function satisfying those conditions.

Consider a function {: Px A — B. For every p € P consider the corresponding
line in the table &, that is, the function &,: A — B defined as §,(a) = &(p, a).
We require that the functions ¢, for different p (=different lines of the table &)
are far away from each other. This requirement seems natural: if the number of
different a’s where &,(a) and &, (a) coincide is large, then the adversary may use
the same p’ for p and gq.

Non-reducible Descriptions for Conditional Kolmogorov Complexity 315

Formally speaking, we give the following

Definition. A function £ is y-regular if for all p # ¢ the number of a € A such
that &,(a) = &4(a) is at most v (=if the Hamming distance between correspond-
ing lines is at least #A — 7).

Lemma 1. If a function £ is y-regular,

8af? < #P/#P' and 8afBy7 < V#A,

then the function ¢ is a winning one.

Proof. First we reduce the general case to the case § = 1. To this end we replace
every line in the table ¢ by 3 lines (that contain the same elements of B as the
old line, one element per cell). The height of the table, #P’, becomes 3 times
bigger and the function ¢ has now 3 times more values (each arrow is replaced by
0 arrows). So « is replaced by & = af. If a function £ is winning in the modified
game with P/ = {1,...,8}x P, @ = a8 and 3 = 1 (all other parameters remain
unchanged) then ¢ is winning in the original game. Indeed, every P, ¢, for the
original game can be transformed into P, @, for the modified game: let G(p)
be the set {(i,p') | p € ¢(p)}, and let ({4, p'),a) be equal to the jth value of
Y(p',a)), in some order. If £ beats P, @, 1) then it beats also P, ¢, 1.
The conditions of the lemma translate into inequalities

8a < #P/#P and 8ay7 < \/#A.

So we can assume that # =1 from now on.

Let us split an a-valued function ¢ into a single-valued functions @1, ..., @q.
Each ¢; covers some cells of the table £&. We will estimate the fraction of elements
covered by ¢; and prove that it is less than 1/(2«a/). This implies that less than
half of all cells are covered.

Why any single-valued function ¢ covers few cells? The reason is that #P’ is
much less than # P, thus the same line of the table ¢ must correspond to many
lines of the table £. By our assumption the lines of £ have small intersection and
hence cannot be easily covered by the same line. The formal argument use the
following simple bound:

Lemma 2. Assume that a family of k£ subsets of an a-element set is given such
that every two subsets in this family have at most v common elements. Then
the sum of cardinalities of all the subsets in the family is at most

2a + 2k /a~y.

Remark: For small k the first term of the sum 2a + 2k, /a7, not depending on k,
is the main term; for large k the second term, linear in k, is the main term; two
terms are equal for k = \/a /7.

Proof of Lemma 2. Let aq,...,a; be the cardinalities of the given subsets.
The inclusions-exclusions formula implies that

a>a1+a2+...+akfk2'y

316 A. Muchnik et al.

(there are at most k? pairwise intersections, each of cardinality at most 7).
Therefore
a1+ ...+ ag <a+k2’y.

If k < \/a/v then the second term (k%v) is bounded by @ and the sum a + k%v
is at most 2a. Hence the inequality of the lemma is true for all k < /a/v. For
k = +/a/y we have also a1 +...+ax < 2k./a7, as in this case 2k,/ay = 2a. Since
the right hand side of the last inequality is linear in &, the inequality is true for
all k > /a/v. To demonstrate this let us delete from the sum a; + ...+ ay, all
terms except for the /a/vy largest ones. As the average of remaining terms is
not smaller than the average of all terms, we are done.
Lemma 2 is proved.

In fact this proof works only if y/a/v is an integer. This is not really important
since one can easily adapt the arguments below and use Lemma 2 only for integer
case, but we can still prove Lemma 2 in general case using more careful bounds.
Namely, a1 + ...+ ar < a+ (k(k — 1)/2)7, since there are at most k(k — 1)/2
pairwise intersections. Then for k& < [y/a/7] one has

a+ (k(k—1)/2)y < a+Va/y(Va/y+1)y <a+Va(Va+7) < 2a < 2k /a7,

(since we may assume without loss of generality that v < a), and the proof can
be finished as before.

Let us continue the proof of Theorem 1. If k different lines of £ are mapped
by ¢ onto one line of 1, then the sets of covered columns in any two of these
lines have at most v common elements. Hence the total number of covered cells

in these k lines is at most
24 A+ 2k\/#Ay.

We have to sum this numbers for all #P’ elements that can be values of the
function ¢, that is, over all lines of table .

The first terms sum up to 2#A - #P’, the second ones sum up to 2 - #P
V#A . So the total number of cells covered by each ¢; is at most

QA H#P + 2. #P\/HA.

Recalling that there are o functions ¢; we conclude that a function ¢ is winning if

1
20#tA - #P' 4 24 Poan/#H Ay < 5#14 - #P.
Lemma 1 is proved.

It is instructive to compare the requirements of Lemma 1 with those from the
probabilistic argument. Note that the first requirement strengthens the require-
ment S#P’ < #P and the second one strengthens the requirement o < #A.
It remains to construct a function ¢ satisfying the conditions of Lemma 1. This
can be done easily by the following algebraic construction. Let A = B be the
field of cardinality 2", and let P be the set of all linear functions (z — a1z + a9)

Non-reducible Descriptions for Conditional Kolmogorov Complexity 317

from A to A. A linear function is determined by 2 coefficients, thus #P = 22",
We can let v = 1, as if two linear functions coincide in 2 points then they coincide
everywhere. Let P’ = {0,1}1°". Let o and 3 be equal to 25". For ¢ < 1/6 the
conditions of Lemma 1 are fulfilled. We obtain a proof of the theorem with, say,
1 =1.01,¢c3 =1.99, co = 1.5 and any € < 1/6, ¢ > 2 (small changes in ¢; and ¢3
are needed to compensate for O(logn) terms). In place of linear functions we
can take polynomials of small degree obtaining a proof with the same ¢y, co and
larger cs, €.

Here is a more “geometric” example. Consider the two-dimensional vector
space (the plane) over the finite field of cardinality 2™. The set A consists of all
points of this plane and the set B consists of all lines on it. The set P consists
also of all points of this plane. The function £ is defined as follows: £(p, a) is
the line passing through a and p. This time v = 2", as the line ap; coincides
with the line apy only if a lies on the line p1py. Let P’ = {0,1}1:5". If ¢ is small
enough the conditions of Lemma 1 are satisfied. And the conditional complexity
of b = £(a,p) given a is at most n + O(logn), as there are about 2" lines passing
through any given point. Apply the winning strategy based on the function &
against adversary’s strategy from Section Pl The covered subset of A x P is
small and can be enumerated given n. This implies that all the random pairs
in A x P (those whose complexity is close to 4n) are not covered. Therefore we
can reformulate the result as follows (taking into account that the line passing
through a pair of random independent points is random):

any random line b on the plane over the field of cardinality 2™ has condi-
tional complexity ~ n given every its random point a; every other ran-
dom point p on that line is a description of complexity 2n for b (given
the point a) that cannot be reduced to a description of complexity 1.5n.

(More precisely, we should require a and p be independent random points on
b, i.e., K(a,p|b) =~ 2n.)

The constructions of this section have the following advantage compared with
proofs from Sections[2and Bl The complexity of K (bla) remains small even if we
consider time-bounded version of Kolmogorov complexity, i.e., require that the
running time of the machine finding the object from its description is bounded
by a polynomial in n. And the non-reducible program exists even for complexity
relativized by any oracle, as in Section [3

References

1. Andrej A. Muchnik, Conditional complexity and codes, Theoretical Computer Sci-
ence, 271 (2002), p. 97-1009.

2. An. Muchnik and M. Ustinov, Constructing non-reducible programs for given pair
of strings, Preprint.

	Definitions and Statements
	Game Approach
	Probabilistic Approach
	Algebraic Construction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

