A General Method to Construct Oracles Realizing
Given Relationships between Complexity Classes

Andrei A. Muchnik* Nikolai K. Vereshchagin*™

amuchnik@int.glas.apc.org ver@math.imu.msk.su

Abstract

We present a method to prove oracle results of the following type.
Let Ky, ..., Koy, and Ly, ..., Loy, be complexity classes. Our method
provides a general framework for constructing an oracle A such that
K$ | #K#&fori=1,...,nand L‘24j_1 = L‘24j for j=1,...,m. Using
that method we prove several results of this kind. The hardest of them
is the existence of an oracle A such that P4 #+ NP4, P4 = BPP*,
and both Co-NP4-sets and NP“-sets are P4-separable. We exhibit
also two theorems that cannot be proved by that method.

1 Introduction

When people realized that P # NP is likely true but hard to prove (and im-
possible to prove by relativizable arguments [BGS 75]), they began to prove
interesting theorems under P # NP hypothesis. Interesting problems of
this kind arise in cryptography, where the reliability of all known protocols
is based on complexity assumptions even stronger than P # NP. Very chal-
lenging problem is to construct cryptographical protocols which are provable
secure if P # NP. In the present paper we ascertain that many complexity
assertions cannot be proved by relativizable arguments even under P # NP

*This research was in part supported by a grant from the American Mathematical So-
ciety former Soviet Union Aid Fund, a Soros grant from the International Science Foun-
dation, an NAS/NRC COBASE grant, and NSF grant CCR-8957604. Work done in part
while visiting the University of Rochester.

Hnstitute of New Technologies, 11 Kirovogradskaja Street, Moscow, 113587 Russia

YAll the results in this paper are joint results by both authors. The text was written
by the second author.

assumption or even under stronger assumptions. In other words, we con-
struct oracles relative to which certain boolean combinations of P # NP
assumption and stronger ones are true. Moreover, we investigate a general
powerful method to prove such theorems and in the last section we present
some theorems which cannot be proved by that method.

Many results of this sort (when an oracle is constructed under which some
boolean combination of complexity assertions is true) appeared in literature.
The following results among them deal with the classes considered in the
present paper. Rackoff in [R 78] constructed oracles A and B such that
PA = R4 # NP4 and PP £ RZ = NP, In [BGS 75], it was proved that
P # NP N Co-NP # NP under some oracle.

In the present paper we prove, for example, that there exists an oracle
under which P # NP and NP-sets are separable, thus we solve the problem
left open in [GS 88]. This implies that reliability of all the cryptographi-
cal schemes based on the existence of one-way functions cannot be derived
from P # NP by relativizable arguments (since one-way functions do not
exist if NP-sets are separable). Moreover, we show that one cannot prove
using relativizable arguments even that NP-sets are inseparable even under
hypothesis that both Co-NP-sets are inseparable and P # R. The most
strong result of our paper states that there exists an oracle under which
P # NP and NP-sets are separable and Co-NP-sets are separable and
P = BPP. In other words, it is impossible to prove by relativizable ar-
guments even the disjunction “NP-sets are inseparable or Co-NP-sets are
inseparable or P ## BPP” under P # NP hypothesis.

The method to solve such problems goes back to [BGS 75]. We call it
“the universum method”. In a sense the method may be viewed as forcing
method in the general form (see subsection 3.2.1). In the present paper we
refine that method and apply it to prove the existence of oracles relative
to which certain boolean combinations of the assertions P = NP, P = R,
P =BPP, P =NPNCo-NP, P = RNCo-R, “NP-sets are P-separable”,
and “Co-NP-sets are P-separable” hold (we are successful to construct
oracles for 13 of 17 possible combinations, thus 4 problems of this kind
remain unsolved).

Roughly speaking, the method works as follows. Suppose we want to
prove that there exists an oracle A such that P4 # BPP# and P4 = R4,
First, we define a subset V' (called the universum) of the set of all oracles.
Second, we choose a sufficiently powerful oracle H (in all known applications
we can take any PSPACE-complete set as H). Third, we consider machines
having two oracles: the oracle H and a varying oracle B ranging V. (Thus,

every machine of this type accepts a subset of B* x V', where B = {0,1} is
the input alphabet.) Finally, we prove that there exists a BPP-machine of
this type which recognizes a subset of B* x V' recognizable by no P-machine
of this type and to prove that for any R-machine of this type there exists a
P-machine of this type recognizing the same subset of B* x V.

In the next section we introduce some notation and prove a sample the-
orem to exhibit all main ideas of the method in the simplest situation. In
Section 3 we prove three general theorems on the universum method, which
will considerably simplify all its further applications. In Section 4 we ob-
tain specific result applying our method. In particular, we give a simple
proof of the result by [HI 86] that there exists an oracle relative to which
P # NP N Co-NP # NP and NP N Co-NP has a complete problem. In
Section 5 we prove that the method fails to prove some true assertions.

2 Preliminaries

2.1 Notations

We restrict ourselves to binary alphabet B = {0,1}. The set of all binary
words is denoted by B*. The set of all functions from B* into B is denoted
by €. A language L C B* is identified with its characteristic function.
We say that a language L separates two disjoint languages Lo and Ly if
Lo(z) =1= L(z) =0and Ly(z) =1 = L(z) =1 for any z € B*. Call any
language from a class C of languages a C-set. An oracle is an element of Q.

We say that NP4-sets (CO-NPA—setS) are separable if any two disjoint
NP4-sets (Co-NPA—sets) are separable by a P4-set. If this is not the case,
then we say that NP4-sets (Co-NP#-sets) are inseparable.

Denote by B”™ the set of all binary words of length n. Denote by B<"
(B2") the set of all binary words of length at most n (at least n, respec-
tively).

Denote by f|D the restriction of function f to set D.

Let us define the binary operation ¢ on languages as follows: B @ C =
{0u | ue B} U{lv|v € C} (we denote by zy the concatenation of words
and y).

An interval is a set of oracles having the form

[(p) ={A € Q| Vy € Dom(p) A(y) = #(y)},

where ¢ is a function from a finite subset of B* into B, and Dom(¢) denotes
the domain of ¢.

For a function ¥ from a subset of B* into B denote by z@ the oracle

vy [(y), if y € Dom(v),
@/’(y)_{g,y ifzeB*\Ig)om(lb).

Denote by |y| the length of word y. For a finite set M C B* denote by
mazlength (M) the max,eps |y, denote by |M| the number of elements of M
and by size (M) the max{| M|, mazlength(M)}.

When we speak about an oracle machine we consider oracle as its extra
input. In particular, when we say “the work of M on input (z, A)” we mean
the work of M with oracle A on input z, and so on.

For oracle machine P, oracle A and & € B*, denote by Queryp(z, A)
the set of all y € B* such that P asks ‘A(y) =?" during the computation
on input (z, A). Let B be another oracle. Denote by Query$(z, A @ B)
the set of all y € B* such that P asks ‘A(y) =7’ during the computa-
tion on input (z, A® B). (To be more precise, Querys(z,A® B) = {y |
0y € Queryp(z,A® B)}.) Let N be a nondeterministic oracle machine
and ¢ be some of its computations with oracle A on some input. Denote by
Query n(c, A) the set of all y € B* such that N asks ‘A(y) =7" during the
computation ¢. We consider probabilistic machines as those having an extra
“random” input. Let M be a probabilistic machine, # be its input and r
be its random input. Denote by Queryar(r, z, A) the set of all y € B* such
that M asks ‘A(y) =7’ during the computation on input (z,r, A). In the
similar way the notations Query4 (c, A® B) and Query4,(r,z, A® B) are
defined.

For a function % defined on a finite set D denote by #1% the number
of y € D such that ¢¥(y) = 1 (we use also the notation #g% defined in the
similar way).

Let z be a binary word of length n. Denote by z the word z(1)z(1)z(2)z(2)

. z(n)z(n)01 (for example, 010 = 00110001). We use zy as the code of
the pair (z,y).

2.2 A sample application of the universum method

Theorem 2.1 There exists an oracle A such that NP -sets are separable
and Co-NP*-sets are inseparable.

Proof. The proof of this theorem is very close to the proof of the theorem
from [BGS 75] stating that P4 = NP4 N Co-NP# £ NP4 for some oracle
A.

Consider the following set of oracles:

V={B € Q| forall n € N there exists
at most one y € B" such that B(y) = 1}.

Let us fix a PSPACE-complete language H. The oracle A will have the
form B @ H, where B is in V. Thus, we have to define the oracle B.
We construct B in such a way that the sets

LB = {1™ | there exists y € B® such that B(0y) = 1},
LB = {1" | there exists y € B" such that B(ly) = 1}

are PA-inseparable. Obviously, both L and LP belong to NPP®H and are
disjoint if B € V.

So we have to construct an oracle B € V such that

1) L8 and LP are separable by no PB%H get, and

2) any two disjoint Co-NPP%H gets are separable by some PPHH get.

Let M be a deterministic or nondeterministic machine. Write M4 (z) =
1 if M accepts (z, A) and write M4 (z) = 0 otherwise. Say that a pair
(Ng, N1) of nondeterministic oracle machines is correct on A if the languages
{z | N{z) = 0} and {z | N{'(z) = 0} are disjoint. The assertion 1)
means that for any polynomial-time oracle machine P the language {z |
PB®H (3} = 1} does not separate L from LP. The assertion 2) means that
for any pair (Ng, N1) of polynomial-time nondeterministic oracle machines
being correct on B @ H there exists a PP®7 _get separating the set {z |
NE®H (z) = 0} from the set {z | NP¥"(2) = 0}. Let Py, P, ..., P,
be an enumeration of deterministic polynomial-time oracle machines and

(Noo, No1), (N1os N11), .+ (Njo,Nj1), ... be an enumeration of pairs of
nondeterministic polynomial-time oracle machines.
We make w step numbered by 1, 2, 3,.... On the step ¢z we construct an

interval I'; intersecting with V in such a way that 'y D I's; D I's D ... and
the following holds:

if i = 2k + 1, then the language {z | PE@H(@") = 1} does not separate
L8 from LP for any B € ; NV and

if ¢ = 2k + 2, then either the pair (Ngo, Vg1) is not correct on B @ H for
all B € T;NV, or the languages {z | NZ®# (z) = 0} and {z | NE%" () = 0}
are separable by a PBP9H get for all Be [NV.

Obviously, for any oracle B from the set V N (72, I'; the assertions 1)
and 2) will hold.

We start with I'g = Q. Let us explain what to do on each step. Let I';_;
be the interval constructed during (¢ — 1)th step. On ith step we make the
following. Consider two cases.

First case: 1 =2k + 1. Let

lioy =T(¢) ={B € Q| B|Dom(¢) = ¢}.

We want to construct an interval I' C I';_; such that the language {z |
PPPH () = 1} does not separate L from LP for any B T'nV.

Pick n € N greater than mazlength Dom(p) and so large that Py on input
(1™, A) makes less than 2" queries to oracle. Without loss of generality we
may assume that P,f@H(ln) = 0 (other case is entirely similar). We know
that |Queryﬁk (1", @ H)| is less than the number of words of length n. Pick

a word u of the form 1z in the set B!\ Query}ik(ln, P& H). Let

_) ¢ly), ify € Dom(e);
¢(y)_{ 1, if y = u;

(note that u is not in Dom(¢p) since n > mazlength (Dom(y))). Then we
have P,;p@H(ln) =0and 1" € L. Let

I;=0,_1N{BeQ|B(y) =4(y) for all

y € Dom(¢)) U Query%k(ln,aﬁ@ H)}.

The set I'; NV is nonempty because 1@ el,nV.

Second case: 1 = 2k 4+ 2. Consider two subcases.

First subcase: there exists an oracle C' € I';_; NV such that the pair
(Nyo, Ni1) is not correct on C'@ H. Then pick @ € B* such that N (z) =
NﬁEBH(x) = 1. Pick an accepting computation ¢y and an accepting compu-
tation ¢; of No and Ny, respectively, on input (z,C'& H). Let

I';={BeQ|B(y) =C(y) for all
y € QueryS, (c0,C'& H) U Query 5, (e1,C & H)}.

Second subcase: for any C' € I';_1 NV, the pair (N, Ni1) is correct on
C @ H. Then let I'; = I';_1. We claim that for any B € I'; NV, the sets
{z NEOEBH(JC) =0} and {z | N,ﬁ@H(x) = 0} are separable by a PBPH _get,
In other words, there exists a polynomial-time oracle machine M that on
input (z, B&® H) outputs j € {0, 1} such that NE]@H(JC) = 1. We construct

6

M in two steps. First, we define a polynomial-space oracle machine P
satisfying the following two conditions:

1) PB(z) is equal to some j such that N,f?-@H(:c) =1 (for all z € B* and
all BeV);

2) |Query p(z, B)| < poly(|z|) (this means that there exists a polynomial
p(n) such that |Queryp(z, B)| < p(|z])) for all z € B*, B € Q).

Second, we construct a polynomial-time oracle machine M such that
PB(z) = MPPH(z) for all 2 € B* and all B € Q.

Machine P on input (z, B) works as follows. Let I'; = I'(¢). We know
that T; NV # (. Therefore, ¢ € T; NV, consequently, N;fo@H(a:) =1
or N;fl@H(x) = 1. Find first an [€ {0,1} such that N,f}@H(x) = 1 and
find an accepting computation ¢ of Ny on (z,» & H). This can be done
within polynomial space by checking all the computations of Nig and Ngy
on input (z,» @ H). All the queries made to H in those computations can
be answered within polynomial space because their lengths are bounded by
poly(|z|) and H € PSPACE. Let D, = Queryf,kl(c,gb@ H). Then query
‘B(y) =7 for all y € Dy \ Dom(p). If B(y) = 0 for all y € D; \ Dom(y),
then NS¥H (2) = 1 provided B € T'(); in this case output /. If there exists
y € Dy \ Dom(¢) such that B(y) = 1, then set

o (1) :{ ¢ly), ity € Dom(p);
B(y), if y € D1\ Dom(p);
(thus, Dom(¢;) = Dom(p) U Dy).

Note that #1¢1 > #1¢.

Check if ¢; € V. If this is not the case, then B ¢ V and we output 0.
Otherwise repeat the whole process for ¢y instead of ¢, i.e., find an ! € {0, 1}
such that N]fll@H(x) =1 and so on. We will output a correct result or define
a function g such that ¢ € V and #1992 > #1¢1. In the latter case repeat
the whole process for @5 instead of ¢. And so on until we output a result.

We claim that we make poly (|z|) loops. Indeed, assume that & loops were
done, i.e., we have constructed ¢y, @9, ..., @r. Note that #10 < #1p1 <
H#H1p2 < ... < #1¢k, therefore #1¢; > ¢, in particular, #1901 > k—1. On
the other hand, mazlength (Dom(pr—1)) < m(z), where

m(z) = max{mamlength(Queryﬁkl(q Ba H))|

[=0,1, cis a computation of Ng; on z}.

Since ¢i_1 € V we can conclude that #1¢r_1 < m(z) + 1.

Thus, k& < m(z) + 2. Obviously, m(z) < poly(|z|). We have made
poly(|z|) queries to B during each iteration of the loop. Therefore, the de-
fined machine P satisfies the requirement 2), i.e., it makes poly(|z|) queries.

Thus, it remains to prove the following

Lemma 2.1 Let P be a polynomial-space oracle machine that on input x
makes only poly(|z|) queries. Then there is a polynomial-time oracle ma-
chine M such that PB(z) = MP% () for all z € B*, B € Q (recall that H
is a PSPACE-complete set).

Proof. Define the functions question (z,w) and result (z,w) as follows. Let
w be a binary word of length n. For any ¢ < n denote by w(¢) the ith
symbol of w. Run the machine P on input z and give the answer w(1) to
the first query, the answer w(2) to the second query and so on. There are
three possibilities:

1) P makes exactly n queries and then produces a result say r; in this
case set

question (z,w) = $, result(z,w) = r;

2) P makes n queries and then makes (n + 1)st query, say ‘B(y) =7’; in
this case set

question (z,w) =y, result(z,w) = $;

3) P makes less than n queries; in this case set
question (z,w) = result (z,w) = $.

So question is a function from B* x B* into B* U {$} and resull is a
function from B* x B* into {0,1,$}. Obviously, both functions question
and result are computable within polynomial space. Therefore, they can be
computed by a polynomial-time machine with oracle H. Let machine M
work according the program shown on Figure 1.

Thus, the lemma and the theorem are proved.O

We are going to present a formal exposition of the universum method,
which simplifies all its applications and allows to prove that in some cases
it fails.

Figure 1: Program 1

begin

w:= A (the empty word);

while result (z,w) = $
commentary: result(z,w) is computed
in time poly(|z|, |w|) by querying H;

do y := question (z, w);

commentary: question (z,w) is computed in
time poly(|z|, |w|) by querying H;

b:= B(y);
w = wb;
od
output result (z,w)

end

3 General theorems

3.1 Basic definitions

We deal with decision problems as well as with separation problems. It is
convenient to consider a decision problem as a particular case of a separation
problem.

Definition 3.1 A separation problem is a function P from B* into {0, 1, x}
(the meaning of this definition is as follows: we have to separate the sel
{z | P(z) = 0} from the set {z | P(z) = 1}). A language is a separation
problem L such that L(z) # * for all x € B*. A language L is identified
with the set {z | L(z) = 1}.

We deal with classes of machines in which not every machine defines
a language (for example, not every polynomial-time probabilistic machine
(BPP-machine) defines a language in BPP). Likewise not every pair of NP-
machines (Ng, N1) defines a problem of separation of NP-sets; it defines
a problem only if Ly, and Ly, are disjoint. It may also happen that for
some oracle A, a probabilistic polynomial-time oracle machine M4 defines
a language in BPP# and for another oracle A machine M4 defines no
language in BPP#. We say that M is correct on A in the former case and
we say that M is incorrect on A in the latter case.

Consider for every probabilistic polynomial-time oracle machine M the
mapping

1, if M4 accepts z with probability
being greater than 2/3;
M(z,A) =14 0, if M# rejects zwith probability (1)
being greater than 2/3;
#, otherwise.

In the sequel we do not distinguish the machine M and the mapping (z, A) —
M (z, A). Call any mapping from B* x Q into {0, 1,#} an oracle machine.

Likewise, consider for every pair N = (Ny, N1) of polynomial-time non-
deterministic machines the mapping

1, if Nf(z) =1, Ng(z) = 0;
_J 0, if NAaz)=0, Ng(z) = 1;
N{@ A =9 4 it NA(z) = NA(z) = 0;)
£, if N o) = Nj(@) = 1

Definition 3.2 A description is a mapping from the set B* x 2 into the set
{0,1,#,*}. A description D is called correct on an oracle A if D(z, A) # #
Jor all x € B*.

For example, (1) and (2) are descriptions, and (2) is an oracle machine.

Definition 3.3 For a description D and for an oracle A denote by D the
mapping x — D(z,A). Given a class D of descriptions and an oracle A
denote by DA the set {D* | D € D and D is correct on A}.

Obviously, if M is an oracle machine being correct on A, then M* is a
language.

Denote by BPP the set of all descriptions having the form (1), where
M is a probabilistic polynomial-time oracle machine. (We use bold face
letters for classes of languages, e.g., BPP, and roman letters for classes of
descriptions, thus, BPP # BPP, however BPP4 = BPP* for any A).

Denote by NP-separation the class of all descriptions of the form (2),
where Ny and Ny are polynomial-time nondeterministic oracle machines.
Likewise the classes of descriptions P, NP, R, R N Co-R, NP N Co-NP,
PSPACE, Co-NP-separation are defined.

Say that a separation problem P is easier than a separation problem P,
(P, < Py in symbols) if Py(z) # * implies Py(z) = Py(z). In other words,

10

the Pi(z) < Py(z) for all z € B*, where < denotes the partial ordering on
the set {0, 1, x} defined by inequalities * < 0, * < 1. Given classes K; and
K of separation problems we write Ky < K if for any P, € K there exists
P, € K5 such that P, < P,. Obviously, if K is a class of languages, then
K < K5 means the same as K; C K5. For example, BPP# < P4 means the
same as BPP4 = P# and (NP-separation)? < P# means that NP4-sets
are separable.

3.2 The most general scheme of the universum method

The universum method can be applied for proving theorems of the following
form. Let

Ki,.. o Kn, L1,oo i Loy My, ooy Moy, Nypoo o N,

be classes of descriptions. We wish to prove that there exists an oracle A
such that

KAg £Afori=1,...,nand
Mfﬁj\ffforj:l,...,m.

Let us describe how this can be done. Consider for simplicity of notation
the case m =n = 1.
Let us call a universum any nonempty subset V' of Q.

Definition 3.4 A superuniversum is any countable family V of universums
having the largest universum up to inclusion and such that the following two
assertions hold:

1. For anyV €V and for any interval I' intersecting with V there exists
V'€V such that V' CVNT.

2. For any infinite chain Vi D Vo D V3 D ... of elements of V the
intersection ;2 V; is non-empty.

In all the applications presented in this paper, the elements of V are
closed in Cantor’s topology, this implies 2 because €2 is compact in Cantor’s
topology. Recall that Cantor’s topology is the topology the base of which is
the set of intervals.

For example, if V is closed in Cantor’s topology, then the family

V(V)={VNTI'|TI is an interval intersecting with V'}

11

is a superuniversum. We call superuniversums of the form V(V) princi-
pal superuniversums. In all the applications of the universum method but
one we use only principal superuniversums. The largest universum in V is
denoted by largest(V).

Thus, we wish to prove that there exists an oracle A for which

KA & 4,
MA < NA,

where K, £, M, N are classes of descriptions. The method can be applied
only if K, £, M, and N are countable and consist of the so called polynomial-
local descriptions.

Definition 3.5 A description D is called polynomial-local if there exists a
polynomial p(n) such that for all z € B* and all A,B € Q if AB=rllz) =
B|B=PUeD) then D(z, A) = D(z, B).

The first general theorem holds for any countable classes of polynomial-
local descriptions. The second and the third general theorems require some
extra restrictions being formulated later. We will apply the method to the
following classes:

P, NP, R, BPP, NP-separation,
Co-NP-separation, NP N Co-NP,
RN Co-R, PSPACE (3)

Obviously, all the classes in the list (3) consists of polynomial-local de-
scriptions.
Let H be an oracle and D be a description.

Notation 3.1 For a class of descriptions D denote by D(H) the class of
descriptions {(z, A) — D(z, A® H) | D € D}.

For example, BPP(H) is the class of descriptions of the form (1), where
M is a polynomial-time probabilistic oracle machine having an extra oracle
H. And generally, if K is a class of machines of certain type, then K(H) is
the class of machines of that type having the extra oracle H.

Notation 3.2 Write DY < DY if Dy(z, A) < Dy(z, A) for all z € B* and
all AcV.

12

Definition 3.6 A description D is correct on a universum V if D is correct
on each element of V. Let D be a class of descriptions. A description D is
D-solvable on a universum V if there exists a description FE in D such that
DY < EVY. In other case D is called D-unsolvable.

Assume that for a superuniversum V and for an oracle H the following
two assertions are true:

(a) K(H) has a description which is correct on largest(}) and which is
L(H)-unsolvable on any V in V;

(b) for any V € V, any description M in M(H) being correct on V is
N (H)-solvable on some universum V' C V, V' € V, that is, there
exist V/ C V, V' €V and N € N(H) such that MV < NV,

We claim that in this case there exists an oracle A such that K4 £ £4
and M4 < N4,

Theorem 3.1 Let K,L, M, and N be countable classes of polynomial-local
descriptions, H be an oracle and V be a superuniversum such that (a) and (b)
are true. Then there exists an oracle A such that K4 £ £L4 and M4 < N4,

Proof. Let K, L, M, N, H, and V satisfy the conditions of the theorem.
Let K be a description in K(H) which is correct on largest(V) and N (H)-
unsolvable on any V € V. We shall construct an oracle B € largest()) such
that the separation problem K is not easier than any problem in £(H)?
and such that M(H)® < N(H)P. Then for the oracle A = B @ H the
assertions K4 £ £4 and M4 < N4 will be true.
Let My, My, ..., M;, ... be an enumeration of M(H) and let Lg, Ly,
.. Lj, ... be an enumeration of £L(H). We have to satisfy countable many
requirements of two types: for each ¢« € N we have to satisfy the requirement

K% £ L7
and for each ¢ € N we have to satisfy the requirement
(*) M, is incorrect on B or MP < NB for some N € N'(H)

We make w steps enumerated by numbers 1,2,3,.... On a step 5 we
define a universum V; in such a way that V; D V5, D V3 D More exactly,
on a step 7 = 2¢ 4+ 1 we construct a universum V; such that KB &£ LP for
any B € V;. On a step j = 2¢ 4 2 we ensure the ¢th condition of the form

13

(%), that is, we construct a universum V; such that M; is incorrect on B or
MP < N8 for some N € N(H) for all B € V.

As B we take any oracle from the set (;2; V;. Thus it remains to describe
what to do on each step.

Set Vy = largest(V). Let j be the number of current step. Consider two
cases.

First case: j = 2t 4+ 1. Since K is L(H)-unsolvable on V;_; there
exist z € B* and C € V;_; such that K(z,C) £ L;(z,C). Pick z and C
satisfying this inequality. As both K and L; are local there exists an interval
I' including C such that K(z, B) = K(z,C) and L;(z, B) = L;(z,C) for all
B € I' and, therefore, K(z,B) £ L;(z, B) for all B € I'. By Condition 1
in definition of superuniversum, there exists a universum V € V such that
V CcV,_inl. Set V; = V. Obviously, KB £ L? for all B € V.

Second case: j = 2¢ 4+ 2. Assume first that M; is correct on V;_;.
By Condition (b) there exist a description N € N(H) and a universum
V' C V;1,V' € V such that M;(z,B) < N(z,B) for all z € B* and all
B € V'. Then we can set V; = V', Obviously, for all B € V; the assertion
(%) holds. Otherwise (when M; is incorrect on V;_;) we can reason as in the
first case because incorrectness is a local property.Od

3.2.1 A generalization of Theorem 3.1

A natural question is if the above theorem can be generalized to involve
other assertions on relativized classes, for example, “K4 has a complete
problem”. The answer is affirmative.

The general approach is as follows. Suppose we wish to prove that there
exists an oracle A such that an assertion ¢(A) on complexity classes is true.
Suppose that the assertion ¢(Y) can be expressed by a closed formula in
a first order language having atomic formulae of the form P(zq,...,,,Y),
where each variable z; ranges a countable set (possibly, different for different
variables). (When we say that a formula is closed we do not consider Y as

a variable.) For example, the assertion KY £ £Y&MY < AV can be
expressed by the following closed formula:

3K € K(Ve € B*K(z,Y) £ # & —3L € LVz € B*K(2,Y) < L(z,Y))
& -3M € M(Va € B*M(z,Y) # # & -3IN € NV € B*M(z,Y) < N(z,Y))

having atomic formulae “K(z,Y) =#", K € K, “M(z,Y) =#", M € M,
“K(z,Y) < L(z,Y)", K € K, L € £, “M(z,Y) < N(z,Y)", M € M,

14

N eN.

Let V be a family of non-empty subsets of €2, satisfying the Condition 2
in the definition of superuniversum. Call a set A C Q pseudo open if for
any V in V intersecting with A there exists V' in V such that V/ C V N A.
(Note that we do not require V to be a base of a topology.) Let us enrich
our language by constants attached to all the elements from the domains of
all the variables. Assume that the following condition is true:

(%) for any atomic formula P(zy,...,z,,Y) for any values ay,...,a, of
T1,...,2, theset {A € Q| P(ay,...,a,,A)} is pseudo open.

Note that Condition 1 in the definition of superuniversum implies that
all the sets {A € Q| P(z,A) = #}, {4 € Q| P(z,A) # #}, {A € Q|
Pz, A) < Q(z,A)}, and {A € Q| -P(z,A) < Q(z, A)} are pseudo open
for any z € B* and any polynomial-local descriptions P and Q).

Let us define the forcing relation V F ¢(Y), where ¢(Y) is a closed
formula of enriched language, as follows. We use the induction on the num-
ber of symbols in ¢(Y). Assume that only connectivities &, Vv, and — and
only the quantifier 3 are used in formulae (the quantifier Vz is expressed as

—Jz—).
1. If p(Y) is atomic, then V F ¢(Y) if ¢(A) is true for all A € V.
2.V Fo(Y)&(Y) i V F o(Y) and V F $(Y).
3. VEeY) VoY) itV EF oY) or VI p(Y).
4. V 3z € Zp(Y, 2) if there exists b € Z such that V F ¢(Y,b).
5. VE-ag(Y)If VHeY)forall V CV.

Obviously, the forcing relation is monotone, that is, if V F ¢(Y) and
V' CV, then V' o(Y).

Lemma 3.1 For any closed atomic formula (YY), V = =@(Y) iff the for-
mula —p(A) is true for all A€ V.
Proof.Proof This easily follows from (k).

We claim that if V satisfies the Condition 1 in the definition of supe-
runiversum, then the assertion (a) means that largest(V) - KY £ LY and
the assertion (b) means that largest(V) = MY < AV, thus (a)&(b) means

15

that largest(V) F (KY £ £Y & MY < AMY). Indeed, by above lemma,
Condition 1 implies that for all polynomial-local descriptions P and @), for
all z € B*, both sets {A € Q| P(z,A) # #} and {4 € Q| =P(z,A) <
Q(z,A)} are pseudo open and therefore V - Ve € B* P(z,Y) # # iff P is
correct on V and V FVz € B*P(z,Y) < Q(z,Y) iff PV < QY. Therefore,
largest (V) = KY £ £Y means that there exists K € K correct on largest(V)
such that there exist no V and L € £ such that KV < LY and the asser-
tion largest(V) = MY < AY means that for all M € M and all V, M is
incorrect on V or there exist V/ € V and N € N such that MV < NV'.
The following theorem generalizes the Theorem 3.1.

Theorem 3.2 Lel n(Y) be an assertion such that Vo = n(Y) for some V;
in V. Then there exists A such that n(A) is true.

Proof.Proof Let ¢1(Y), ©2(Y), ¢3(Y), ... be an enumeration of closed for-
mulae in the enriched language. We use a diagonal construction. On ¢th
step we construct a universum V; as follows. If V;_; F —¢;(Y), then let
V; = Vi_y. Otherwise pick V' C V;_; such that V' ¢;(Y) and let V; = V.
Let A be any oracle from the intersection ()2, V;. Let us prove by
induction that for every closed formula ¢(Y') of enriched language

(FVikpY)) <= ¢(A)is true.

1. p(Y) is atomic. If V; - ¢(Y) for some ¢, then by definition of forcing
relation, ¢(B) is true for all B € V;, in particular, p(A) is true. If
Vi Vi H @(Y), then, by construction, V; F =p(Y) for some 7. Take
such ¢. By the Lemma 3.1, —=¢(B) is true for any B € V;, consequently,
—p(A) is true.

2. If 3¢ V; F =p(Y), then there exists no j such that V; F ¢(Y). By
induction hypothesis, ¢(A) is false. If Vi V; i/ —=¢(Y'), then, by con-
struction, there exists j such that V; = ¢(Y), therefore ¢(A) is true
by induction hypothesis.

3. I F Vi (Y)&y(Y), then 3¢ V; - (Y) and 3¢ V; F (YY), therefore
both ¢(A) and #(A) are true by induction hypothesis. If p(A)&y(A)
is true, then by induction hypothesis there exist ¢+ and j such that
Vil oY) and V; = 4(Y). Therefore Viyaxgi i o (Y)&0(Y).

4. The remaining cases can be done similarly.

16

Since Vo F (YY), we are done. O

Thus, if we want to prove that there exists an oracle A such that K4 £
£4 and M4 < N4, then we have to find a superuniversum V and an oracle
H such that (a) and (b) are true. In this form the method is universal.
Indeed, if there exists an oracle A such that K4 £ £4 and M4 < N4 then
both (a) and (b) hold for V = {{A}}, H =0 or for V = {{0}}, H = A.

Now we describe the very universum method. It does not use any notion
of computability. It is not universal as we will see in Section 5.

3.3 Non-uniformity

Given a class D of descriptions define the nonuniform counterpart of the
class D as follows.

Definition 3.7 The nonuniform counterpart of a class D of descriptions is
the class
n.uD = U D(C).
cefl

For particular classes of descriptions we can give equivalent definitions using
no notion of computability. Let us do this for the classes from the list (3).
To do this we have to define the notion of a boolean decision tree and the
notion of a branching program. More exactly, we define families of decision
trees and families of branching programs; for the seek of breviety we omit
the word “family”.

A boolean decision tree (or simply decision tree) is a pair 1" = (question , result),
where question is a function from B* x B* into B*U{$}, result is a function
from B* x B* into {0,1,%}. The decision tree T' computes the description
(z,A) — T'(z,A) defined as follows: T'(z, A) is equal to the result produced
by the program shown on Figure 2.

We assume that this program always halt. Call a decision tree polynomial
if
1) there exists a polynomial p such that |question (z, w) |< p(|z|, |w|) for any
z,w € B* and any A € Q and
2) the Program 2 halts after executing poly(|z|) loops; it is important that
in this case the program makes only poly(|z|) queries to A.

It must be stressed that we do not require any computability of functions
guestion and result. Obviously, if both functions gquestion and result are

17

Figure 2: Program 2

while result (z,w) = $
do

estion (z,w);

od
output result (z,w);
end.

polynomial-time computable, then the description 7'(z, A) can be computed
by a polynomial-time oracle machine.

We claim that a description D is in n.u.P iff D can be computed by
a polynomial decision tree. This is quite obvious: let D be in n.u.P, say
D(z,A)= M(z,A® C), where M is a polynomial-time oracle machine and
C'is an oracle. Then let question(z,w) be the question to oracle A made
by M after getting answers w(l), w(2), ..., w(|w|) to previous questions
made to A and let result(z,w) be the value output by M after getting
answers w(l), w(2), ..., w(|w|) to questions made to A (if the specified
values are undefined, then we consider them to be equal to $). Obviously,
the defined decision tree T' = (question, result) is polynomial and T'(z, A) =
M(z,A® C) = D(z,A) for all z, A. Conversely, let a description D be in
n.u.P, say D(z, A) = T'(x, A), where T = (question, result) is a polynomial
decision tree. Then take as C' the oracle relative to which both functions
question and resull are computable in polynomial time. Program 2 defines
then a P(C)-machine computing D(z, A).

It is easy to prove that a description D belongs to n.u.NP iff there exists
a polynomial p(n) and a description D’ € n.u.P such that

D(x,A) =1<+= 3y e BPI=D D' (zy, A) = 1.

In the similar way the classes n.u.BPP, n.u.R, n.u.(NP N Co-NP) =
n.u.NPNn.u.Co-NP, n.u.(RNCo-R) = n.u.RNn.u.Co-R can be characterized.

18

Figure 3: Program 3

begin
s 1= initial_state (z);
while result (s) = $
do
y 1= question(s);
b= A(y);
s := next_state (s, b);
od
output result(s)
end.

For example, a description D is in n.u.BPP if there exist a polynomial p(n)
and a description D’ € n.u.P such that

1, if PrObreBP(M) [D’(Fw, A) =1] > 2/3;
D(z,A)=1<0, if Prob _g(lz) [D'(rz, A) = 0] > 2/3;
#, otherwise.

The nonuniform counterpart n.u.PSPACE of the class PSPACE can be also
defined in the similar way: call a quadruple

P = (initial_state , next_state , question, result),

where initial_state: B* — B*, next_state:B* x B — B*, question:B* —
B* U {$}, result: B* — {0,1,%$}, a branching program. The value P(z, A)
produced by the branching program P on input (z, A) is computed by the
program shown on Figure 3. Call a branching program polynomial-space if
there exists a polynomial p such that the length of word s does not exceed
p(Jz|) in all the steps of execution of that program. It is easy to prove that

D € n.u.PSPACE < there exists a polynomial-space branching
program P computing D.

Now we are able to present the second general theorem which is the
essence of the universum method. This theorem simplifies all further appli-
cations of the method.

Suppose there exists a superuniversum V such that the following two
assertions hold:

19

(a') there exists K € n.u.K which is correct on largest()) and n.u.£L-unsolvable
on any V € V;

(b") for any V, every description M € n.u.M being correct on V is n.u.N-
solvable on some V' C V, V' € V.

Note that (a’) and (b’) are obtained from (a) and (b), respectively, by re-
placing uniform classes relativized by H by the corresponding nonuniform
classes. The following theorem states that in this case there exists an oracle
H for which (a) and (b) are true, and hence there exists an oracle A such
that K4 £ £4 and MA < N4,

To prove that theorem we need some extra restrictions on classes K, L,
M, and N. Let us formulate those restrictions. We would mention that
they are rather combersome and therefore possibly it is better to skip them
and to read the following theorem assuming that the classes K, £, M, and
N belong to the list (3).

Call a class D of descriptions a polynomial complezity class if

1. D consists of polynomial-local descriptions,
2. D includes the class P, and

3. there exist a larger class D’ of descriptions, an enumeration Dy, Dy,
Dy, ... of that class, and a function ¢ : N x B* x Q — N (called
complexity function) such that the following two conditions hold:

(a) D={D; € D' | c(i,z,A) < p(|z]) for some polynomial p an all
xz,A}, and

(b) for all polynomial-time oracle machines (), R and S outputting
an integer, a binary word and a bit, respectively, there exists m
such that

Dm(.f, A) = DQ(I,A)(R($7 A)v Sﬁ)
and ¢(m, z) < poly (Q(z, A)+
ol + e(Q(x, A), R(x, 4),52)) (4)
where SA stands for the oracle {y € B* | S(z,y, A) = 1}. In par-

ticular, if D; is in D, then the description (z, A) — D;(R(z, A), S2)
is in D, too.

20

We can see that the Condition 3b is both a complexity version of the
s-m-n-theorem in the Recursion theory and the property of closeness under
polynomial-time reductions. It is easy to verify that all the classes in the
list (3) are polynomial complexity classes. In the following general theorems
we assume the classes K, £, M, and A to be polynomial complexity classes
and we sometimes use the conditions involved the definition of a polynomial
complexity class without reference.

Theorem 3.3 If a superuniversum V satisfies (a') and (b') then V satisfies
(a) and (b) for some oracle H. Moreover, there exists an oracle F such that
Jor all oracles G being polynomial-time Turing reducible to E, the condilions
(a) and (b) are true for H being equal to any EXPC-complete sel, where
EXP = Time(2P°¥ ("),

Proof. Let V be a superuniversum such that assertions (a’) and (b’) are true.
Then there exists a description K € n.u.K which is correct on largest(V) and
n.u.L-unsolvable on any V € V. Let D be the oracle such that K € K(D).
Then for all oracles H which D is polynomial-time Turing reducible to the
assertion (a) holds. Thus, it suffices to construct an oracle H such that (b)
is true and which D is reducible to.

Let M = {Mo,Ml,MQ,...}. Let V = {Vo,vl,VQ,...}. Let Nl =
{No, N1, N3, ...} be the class of descriptions and ¢ be a function for which
the assertions 3a and 3b in the definition of complexity class are true for

D=WN.

Notation 3.3 Given an n € N and an oracle F, denote by F™ the binary
word of length 2"T' — 1 encoding the value of F' on all the words of length
< n.

The description M; is polynomial-local for any j in N, i.e., there exists a
polynomial p; such that M;(z, F') depends only on z and FIB=p (2| Let j,1
be in N, z be in B* and F be in Q. Consider the set U = U(j, 1, z, Frs({=D)
consisting of all the pairs (k, B), k € N, B € Q, such that

Mj(a:,A@F) < Nk(a?,A@B)

for all z € B* and all A € V. Take a pair (k, B) from U having the minimal
sum k+|z|+c(k, z, B). Denote that pair by (k(j,(, z, Fpﬂ(m)), B(j,1,z, Fpﬂ(m))}.
Let C' be any oracle such that

1, ifs< k(j,lJ’Fp;(lxl))’
0, otherwise.

C(0jiz F700%) = {

C(15lz Friely) = B(j’l7x’FpJ(|$|))(y)_

21

Let F = C& D. Let us prove that if G is polynomial Turing reducible to F,
then for any EXP%-complete oracle H, the assertions (a’) and (b') are true.

Let F be polynomial-time Turing reducible to G and let H be an EXP-
complete oracle. The assertion (a') is true because D is polynomial-time
Turing reducible to H. Let us prove (b’). Let V; be a universum in V and
let M;(z, A® H) be a description in M(H) correct on V;. We have to prove
that there exist a universum V; C V; and a description N,, in A such that

M;(z, A9 H) < Ny (z,A® H) for all Ain V; and all z.
Lemma 3.2 Both functions

e = k(e HHUEDY and (5)
7y = B, HY D) () (6)

are polynomial-time computable relative to H.

Proof. By (b') there exist &, [, and an oracle B’ such that Ny, € N, V, C V;
and

M](w,AEBH) S]Vkl(w’A@B/)

for all A € V; and all z. Let us fix such &, such [, and such B’.
Since (k', B') belong to U(j,1, z, FPJ(|$|)) and

k' + |$| + C(klv z, Ad B,) < poly(|x|),
we can conclude that

k(j7l7$7HpJ(|I|)) + |$|_|_
c(k(j, 1,2, H» D) 2 A B(j,1, , HP(2)))
< poly (|z]). (7)

Let us prove first the polynomial-time computability of the function (5)
(denote it by f). By (7), f(z) < poly(|z|), therefore it suffices to prove
that f(z) can be computed in time 2P°(I#]) relative to G. (Recall that H
is a EXP%complete oracle.) This can be done as follows. Let z be the
input word. Find first H?5(I#), To this end compute H(z) for all z such
that |z| < p;j(|z|) using an exponential machine with oracle G recognizing
H. (As |z| < p;(|z]), each H(2) can be computed in time 2P°(I=]).) Then

ask ‘C’(OﬁfHPJUIDOS) =7 for s = 1,2,3,... until we find an s such that

C(05lz HP:(I2D0%) = 0. Since C' is polynomial-time reducible to G, all those
questions to C' can be answered in time 2P°¥(#D) using the oracle G.

22

The polynomial-time computability of function (6) can be proved similarly.0

Thus, we have

Mj(z,A® H) <

Nk(j,l,x,HPJ“ID)(:E’ A® B(j, 1z, HPJ(M)))

for all A € V; and all z. By the above lemma and by property 3b in the
definition of complexity class there exists m such that

Np(z,A® H)=

Nk(j,l,z,HPJ“ID)(w’ A® B(j, 1z, Hpj(M)))

for all z and A and

c(m,z,Ad H) <
poly (k(j 1, 2, HP D) 4 |a| +
c(k(j, 1z, WD) 2, A& B(j 1,2, HPD))) <

poly(|z|).

(The first inequality is true by (4) and the last inequality is true by (7).)
Hence N,, is in A and we are done.O

Let us see how the proof of Theorem 2.1 can be simplified by using
Theorems 3.6 and 3.3. Besides that general theorems we use one more tool

due to [BGS 75].

New proof of Theorem 2.1. Consider the universum defined as follows. De-
fine the sequence of integers n(z) by induction n(0) = 1, n(: + 1) = 22"
Set S ={n(:) | : € N}. Let

Vo={BeQ|¥neS #(AB") <1
and Vn € S #,(A|B") = 0}.

We claim that both (a') and (b’) hold for the superuniversum V(Vp) and
K=NP-separation, £L = N' = P and M=Co-NP-separation.

The assertion (a’) can be proved just as it was done in the old proof of
Theorem 2.1.

Let us prove (b’). Let M belong to n.u.Co-NP-separation and is correct
on V € V(Vg). We have to construct a universum V' € V(V;), V/ C V and
a polynomial decision tree N such that MY < NV,

23

Let V! = V. Let M be defined by the pair (Mp, M;) of machines from
n.u.NP. Then My(z,B) = 1 or My(z,B) = 1 for all z € B*, B € V.
Procedure N on input (z, B), where B € V| has to output a j € {0, 1} such
that M;(z, B) = 1.

Procedure N on input (z, B) works as follows. Find first the number
n(i) € S such that 2°0=1 = log, n(i) < |z| < 2. Then query the value of
B on all the words of length < n(¢ — 1). The number of such queries is less
than 270=D+1 < 9|z|.

Let k be so large that M;(z, B) does not depend on B|B2™i*1) for
j = 0,1 for all |z > k, (such &k does exist, as n(z + 1) = 922" > 2lely, If
|z| < k then compute My(z, B) directly and output 0 if My(z, B) = 1 and
1 else. Let |z| > k. Let V =T'(¢) N Vp.

Define the function ¥ as follows:

B(y), if [yl < n(i—1);
V(y) = ¢ly), if y € Dom(yp) and |y| > n(i — 1);
undefined, otherwise.

Check if ¢» € V. If this is not the case, then B ¢ V and we output 0.
Otherwise Mo(z,%) = 1 or My(z,%) = 1. Find a j € {0,1} such that
M; (z, 1,@) = 1 and an accepting Computatif)n c of M; on input (z, 1/;) Then
query ‘B(y) =7 for all y € Queryy,(c,¥) \ Dom(). If B(y) = 0 for all
y € Queryp, (c, 17)) \ Dom(#), then M;(z, B) = 1 and we output j.

If there are at least two different yy, y2 in Queryy, (c, 1/;) \ Dom(#) such
that B(y;) = B(yz) = 1, then B ¢ V because n(i—1) < |y1|, |y2| < n(i+1);
in this case output 0. Therefore we can assume that there exists unique
y € Queryp, (c, 1/;) \ Dom(%) such that B(y) = 1. Then define

1, if z=1y;
n(z) = { (), if 2 € Dom();
undefined, otherwise.
Then 7 isin V. Find j € {0, 1} such that M;(z,7) = 1 and then output that
j. We know, that if B € V then B|B<"(i+1) = §|B<"(i+1) and M; (=, B) does
not depend on B|an(i+1), thus we have output a correct answer. Obviously,

size (Query y (z, B)) < poly(|z]).O

The new tool is the use of universums consisting only of oracles B such
that B|B™ = 0,,, where 0,, is identically zero function defined on B". We
call such universums scanty and will prove a general theorem concerning
such universums.

24

3.4 Cylindric scanty universums

Given an n € N, denote by F, the set of all functions from B” into B;
denote F = (J,cs Fy. For a € F call the n such that o € F,, the norm of
a and denote it by [|a||. Call any subset Z of F a base. Given an n € N,
denote by Z, the set ZNF,,. For a base Z define

VZ)={A€Q|VneS AIB"€Z, Vn¢S AIB"=0,}.

Call an oracle A scanty if A|B" = 0,, for all n ¢ S. We call the universums
of the form V(Z) cylindric scanty universums. It is easy to verify that V (2)
is closed in Cantor’s topology. The set Z is called the base of V(Z). Call
any family Z of bases having the largest base up to inclusion a superbase.
Denote the largest base in Z by largest(Z2). For a superbase Z define the
superuniversum

V(Z)={I'nV(Z)|Z € Zand I'is

an interval intersecting with V(Z)}.

Our aim is to formulate simpler conditions which are equivalent to con-
ditions (a’) and (b’) in the case when V has the form V(Z2).

To this end we want to define what means that a machine has a finite
oracle o € F as input. Given a description D, o € F,,, and z € B*, denote

D[a] = D(1*, &), D[z,a] = D(z1", &).

Say that a description D is correct on a base Z if D[z,a] # # for all
z € B*, @ € Z. Say that a description is good on a base 7 if D[a] # # for
all @ € Z. If M is a machine then the words “M works on input [z,a] (on
input [a], respectively)” mean that M works on input (21", &) (on input
(1™, &), respectively).

Write K% < L? if K[z,a] < L[z,a] for all z € B*, a € Z. Write
K% < L7 if K[a] < L[a] for all @ € Z. The notation Query [z, @] means
QueryM(fln"”, &). Other query notations are expanded in the similar way.

In the proof of the next theorem we use the following consequence from
the property 3 of polynomial complexity classes: if D is a polynomial com-
plexity class, Dy and Dy are in D and D is in P, then the description

p [Do(z,A), if D(z,A) = 0;
Di(x, A) = {Dl(ac,A), i D, A) = 1;

is in D. Obviously, this is true for the nonuniform version of D, too.

25

Theorem 3.4 Let Z be a superbase such that the following two assertions
are true:

(a”) there exists a description K € n.u.K which is good on largest(Z) and
such that there exist no base Z € Z and L € n.u.L for which K% < LZ;

(b") for all Z € calZ and all M € n.u.M being correct on Z there exist
a base Z' C Z, Z' € calZ and a description N € n.u.N such that
M? < N7,

Then for the superuniversum V = V(Z) the assertions (a') and (b')
are lrue (and, therefore, there exists an oracle A such that K4 £ £4 and

MA S NA),

Proof. Let (a") be true. We have to prove (a’). Let K € n.u.K be a
description being good on largest(Z) and such that there exist no Z € 2
and L € n.u.L for which K[a] < L[a] for all @ € Z. Obviously, the largest
universum in V is V (largest(Z)). Define the description

K[A|B"], if z = 1", where n € S;
0, otherwise.

K@m:{

The description K’ is correct on V (largest(Z)) and belongs to n.u.K. Let
us prove that there exist no universum V € V and description L' € n.u.L
such that K'(z, A) < L'(z, A) for all z € B*, A € V. Assume the contrary:
such V and L' exist. Denote by ['(¢) and by Z the interval and the base, re-
spectively, such that V = I'(¢) NV (Z). Denote by k the mazlength Dom(yp).
To obtain a contradiction let us construct a description L € n.u.L such that
Kla] < L[] for all « € Z.

For all ¢ € S let us fix a function ¢; € Z; being consistent with ¢ (i.e.
©(y) = ¥;(y) for all y € Dom(p) NDom(%;)). For any function o € F define
the oracle & as follows: for any i € N, y € B,

0, if i ¢ S;
{a@), it i = o]
¥i(y), otherwise.

ay) =

Note that if o is in Z and ||a| > k, then & € V. Therefore, if & € Z and
||| > k, then K'(z,&) < L'(z, @) for all € B*. In particular,

Kla] = K'(1 a) < p'@allell &)

26

if @ € Z and ||a|| > k. Obviously, there exists a description L € n.u.L such
that

I[a] = {Lf(l”a”,d), if ||| > k;
K[a], otherwise.
Then Kla] < Lla] for all @ € Z, because if ||a|| > k, then K[a] =
K'(1llella)y < p'(1llell &) = Lla], and if ||a|| < k then K[a] = L[a] by
definition.

Let us prove that (b”)=(b’). Let (b”) be true. We have to prove (b’).
Let V =V (Z)NI'(¢) be a universum in ¥V and M be a description in n.u.M
being correct on V. We have to prove that there exist a universum V' C V,
V' € V and a description N € n.u.N such that M(z, B) < N(z, B) for all
BeV' zec B*.

Given a C € © and an n € N, denote by C™ the binary word of length
2711 1 encoding the value of C on all the words of length < n. Denote for
x € B* by i(z) the number i such that log, (i) < |z] < 2*%). Recall that
n(t) is defined by induction: n(0) =1, n(i 4+ 1) = 22"

Fix an integer ng such that if || > ng, then M (z, B) does not depend
on B|BZ"(i(=)+1) and n(i(z)) > mazlengthDom(y) (such an ng does exist
because n(i(z) + 1) > 2I*l). Let us construct a description M’ € n.u.M
being correct on Z such that

M(z, B) = M'[zB"/*)~1) B|B"({=)] (8)

for all B €V and all z € B>™.

The description M’ on input [u, «], works as follows. Check first whether
u has the form zC™#)~1) for some C' € V. If this is not the case, then
output 0. Otherwise find z and C' € V such that u = 2C™CE) =D If |z| < ng
or ||af| # n(i(z)), then output 0. Otherwise output M (z, &), where

L (Cy), if |yl # n(i(z));
Mw—{mw if [y| = n(i(z)).

Obviously, (8) is true for all B € V and all z € B”™. Let us prove that M’
is correct on Z. Assume that a is in Z. If u has the form zC™({@) =1 where
C eV, |z| > ng and n(i(z)) = ||a||, then & is in V (by definition of V' and
the choice of ng); in this case M'[u,a] = M (z, &) # # (since M is correct
on V). Otherwise M'[u,a] = 0.

The assertion (b”) implies that there exist a base Z’ € Z and a descrip-
tion N’ € n.u.N such that 72’ C Z and M'[u,a] < N'[u, o] for all u € B*,

27

acZ. Set V' =T(p)NV(Z'). If B € V', then B|B"(*) ¢ 7’ therefore,
M {@Bn(i(z)—1)7 B|Bn(i(z))} <
N/ {an(i(ﬂf)—l)7 Ban(i(m))} . (9)

There exists a description N € n.u.N such that

N'[zB™i=)=1) g|B™i=))],
N(z,B) = if |z| > no; (10)
Mz, B), if |z| < ng.

Combining (8), (9) and (10) we obtain that M(z,B) < N(z,B) for all
z € B*and all B € V'.O

In all the applications but one we will use only superbases consisting of a
single base.

4 The applications of the universum method

The assertions on complexity classes to which the method will be applied
are shown on the Figure 4. The edges of the drawn directed graph represent
relativizable implications (i.e., implications that are true under any oracle).
For example, the implication P4 = NP4 = P4 = BPP4 is true by the
well known Sipser’s result BPP4 C DI (P.Gécs improved that result to
BPP#4 C X4 [S 83]). We apply the universum method to prove the existence
of oracles under which one or another combination of assertions that label
the nodes of the graph holds. There are 17 possible combinations of those
assertions. They are listed in the Table 1. The signs “4” and “@” put in
a line of that table indicate that the corresponding assertion is true. The
signs “—” and “©” indicate that the corresponding assertion is false. The
difference between the signs “4” and “@” is that the truth of assertions
labeled by “+” follows from the truth of assertions labeled by “®” but the
truth of any assertion labeled by “@®” does not follow from the truth of
other assertions. The same difference is between the sings “—” and “©”.
The commentary ending each line includes information about where the
combination present in the line is proved or some information about how it
can be proved.

We prove the existence of oracles for which the combinations of all the
lines but the lines number 3, 4, 8, and 9 are true. The problem whether

28

Table 1:

NP-sets |Co-NP-sets|P = NP P=R
P=NP are separablelare separable|NCo-NP P=BPP P =R NCo-R Commentary
1 @ + + + + + + [BGS 75]
2 S fasy fast + fasy + + Theorem 4.12
3 — & @ + s, & + Unknown
4 - @ fa + - e + Unknown
5 — & e, + & + + Theorem 4.4
6 - @ O + O & + Theorem 4.7
7 - @® S + - S + Theorem 4.6
8 - S @ + @ + + Theorem 4.2
9 — . @ + s, & + Unknown
10 - S D + - e + Unknown
11 — o S &) @® + + Theorem 4.5
12 — s S &) S @® + Theorem 4.8
13 - S S &) + S + Theorem 4.9
14 — — - o @ + + Theorem 4.3
15 - - - o S &5 + Theorem 4.10
16 - - - o - S @® Theorem 4.11
17 - - - - - - S Theorem 4.1

29

Figure 4:

P4 = Np4
P4 = BPP4 NP4 sets are separable Co-NP*-sets are separable
P4 =RA P4 = NP* n Co-NP*

\

P4 = R4 N Co-R4

there exist oracles for which the combinations in lines 3, 4, 8 and 9 are true,
remains open. Moreover, the following question remains unresolved.

Question 4.1 Is there an oracle A under which Co-NP-sets are separable

and P4 # BPPA,

When constructing oracles we shall use following six standard bases:

Z(<1) = {a € F | #1a < 1}; this base was already used in the proof
of Theorem 2.1

Z(=1) ={a € F | #1a = 1}

Z(>1) ={a € F | #1a > 1}

Z(BPP) = Upes{a € Fy, | #1a/2™ ¢ [1/3;2/3]}
Z(R) = Unes{a € Fr | #1a/2" € (0;1/2]}

Let for o, 8 € F,, o @ B denote the function in F,; whose value on
word Ou is equal to a(u) and on word 1u to §(u). Let Z(RNCo-R) =

Unes{a®B | @, € Froy, (F#10/2771 > 1/2,#48 =0 or #45/2"1 >
1/2,#100=10)}

30

Other bases being used in proofs are built from these standard bases by the
following operation + on bases: Z' + Z" = {a € F,,, | i is even and « €
Z'VU{a € F,, | tis odd and a € Z"}. In the similar Way (by using residues
modulo 3) Z'+ Z" + Z"" is defined.

The universum V(Z(<1)) fits for constructing an oracle under which
NP-sets are inseparable (with LF and LP defined above being inseparable
sets). The universum V (Z(>1)) fits for constructing an oracle under which
Co-NP-sets are inseparable (with {17 | n € S}\ L¥ and {1" | n € S}\ LP
being unseparable sets). The universum V(Z(=1)) fits for constructing an
oracle under which NP N Co-NP # P (with L} being a language in NP N
Co-NP\P). The universums V(Z(BPP)), V(Z(R)) and V (Z(RNCo-R))
respectively fit for constructing an oracle under which BPP # P, R # P
and RNCo-R # P. It is easy to verify that assertion (a”) is true in all listed
cases (i.e., it holds, for example, for K = BPP and £ = P and Z = Z(BPP).
Moreover, in the listed cases, assertion (a”) is robust under addition of bases.
This means, for example, that assertion (a”) is true for X = BPP and £L =P
and Z = Z(BPPHZ' for any Z’. In other words the following lemma holds.

Lemma 4.1 Assertion (a') holds for the following combinations of Z, K, L:
o Z={Z(<1)+ 7'}, K = NP-separation, £ = P;
o Z={Z(=1)+2", K=NPNCoNP, £ = P;
o Z={Z(>1)+ 7'}, K = Co-NP-separation, £ = P;
o Z={Z(BPP)+Z'}, K =BPP, [=P;
e Z={Z(R)+Z'}, K=R, L=P;
e Z={Z(RNCo-R)+ 7'}, K=RnNCo-R, L=P.
Proof.Proof Obviously.O

We need also some facts about the cases in which the assertion (b”) is
true. These facts are stated in the following five crucial lemmas.

Lemma 4.2 The assertion (b") is true for K = Co-NP-separation, £L = P
and Z = {Z(<1)}.

Proof. This is already proved, in fact, in the second proof of Theorem 2.1.0

Lemma 4.3 The assertion (b") is true for K = BPP, L = P and Z =
{Z(<1)} or Z = {Z(=1)}.

31

Proof. Let M be a machine in n.u.BPP being correct on Z(=1). As Z(=
1) C Z(<1) it suffices to construct a polynomial decision tree N such that
M[z,a] = N[z,a] for all z € B*, a € Z(<1). The decision tree N on input
[z, o] works as follows. Denote by n the norm of a. Let k be the length of
random strings used by M on input [z, «] (we may assume that & depends
only on |z| and ||e|). Find first the probability p of the event “M accepts
[z,0,]",i.e., Prob _gi{M[z,a,r] = 1}, where M[z, a, r] denotes the result
output by M on input [z, a] and random string r, and Prob gk means the
probability over B* with respect to the uniform probability distribution.
Without loss of generality we may assume that p > 1/2 (the case p < 1/2is
entirely similar). Given y € B™ and g € F,, denote

wﬁ(y) = PrObreBk{y € QueryM[x, ﬁv T’]},

i.e., the probability of the event “M on input [z, 8] queries ‘G(y) =7"". It is
easy to see that

" wsly) = g 3 |Query aale. B.7]] < poly([al, n)

yeB” reB*

Denote by W the set of all y € B™ such that wq,(y) > 1/6. Obviously,
W] < poly (Jz], n).

Find W and query ‘a(y) =7’ for all y € W. These are all the queries
made by the decision tree V. There are two possibilities: 1) Vy € W a(y) =
0 and 2) 3y € W a(y) = 1. Consider the cases separately.

1) If Vy € W a(y) = 0, then M[z,a] # 0 provided a € Z(<1). Indeed,
assume that @ € Z(<1) and the probability ¢ of the event “M accepts
o” is less than 1/3. Then a # 0, because M accepts 0,, with probability
p > 1/2. Denote by y the word such that a(y) = 1. Then wo,(y) < 1/6
because y ¢ W. Make use of the following

Lemma 4.4 For any 3,7 € F,,,
‘Probr{M[w,% r]=1} — Prob { M|z, 3,r] = 1}‘
< Y oeBry(2)26(z) WA(2)-

Proof. Obviously.

By the above lemma, |Prob,.{Mz,a,r] = 1} — Prob.{M][z,0,,r] =
1}| < wo,(y) < 1/6, therefore, Prob . {M[z,a,r] =1} > 1/2-1/6 = 1/3.

32

The obtained contradiction shows that M[z,a] # 1if @ isin Z(<1). Output
1 in the first case.

2) dy € W a(y) = 1. If there exist at least two y € W such that
a(y) = 1, then output 0, as in this case @ ¢ Z(<1). Assume that there
exists the unique y € W such that a(y) = 1. Define

{1, if z=uy;

Bz) = 0, if ze B\ {y}.

Note that § = a if @ € Z(<1). Find the probability ¢ of the event “M
accepts [z, 8]” and output 1 if ¢ > 2/3 and 0 else.O

Lemma 4.5 The assertion (b") is true for K = NP-separation, £ = P and
Z ={Z}, where Z is any base of the following ones: ¥, Z(>1), Z(BPP),
Z(R).

Proof. Let Z be a base from the above list. Let M be a description in
n.u.NP-separation being correct on Z. It suffices to construct a polynomial
decision tree N such that M;[z,a] < N[z,a] for all € B*, a € F.

Let M be the pair (M, M;) of machines from n.u.NP. The correctness
of M on Z means that for all z € B*, a € Z there exists ¢ € {0, 1} such that
M;[z,a] = 0. We have to construct a polynomial decision tree N that on
inputs 2 € B*, a € F finds an ¢ € {0, 1} such that M;[z,a] = 0.

Let x € B* and o € F are inputs of N. Let « be in F,. Call any
function having the form

B|Query ar,[c, 5] N B”

where g € F,,, M;[z, 5] = 1 and ¢ is an accepting computation of M; on input
[z, (], an i-certificate. Note that if v is an i-certificate and « continues 7,
then M;[z,a] = 1. Obviously, the cardinality of domain of any i-certificate
(¢ € {0,1}) is bounded by a polynomial of |z| and n, say p(|z|, n). We claim
that if 2" > 8p(|z|, n), then any O-certificate ¢ is inconsistent with any 1-
certificate ¢ (that is, ¢(y) # ¥ (y) for some y € Dom(¢) NDom(7)). Indeed,
assume that ¢ and ¢ are consistent. Then there exists a function g € F,
that continues both ¢ and . As |Dom(p)|+ |[Dom(¢)] < 2p(|z|, n) < 272
we may assume that § € Z. We have Mgz,] = M;[z, 5] = 1 because 3
continues both ¢ and . Therefore, M is incorrect on Z. The contradiction
shows that any 0-certificate is inconsistent with any 1-certificate.
So N on input [z, a] works as follows. Consider two cases.

33

Figure 5:

begin
Uy := ®§
for i =1 to p(|z|,n) + 1
do
if there exists no O-certificate
being consistent with a|U;
then output 0 and halt;
elseif there exists no 1-certificate
being consistent with a|U;
then output 1 and halt;
else pick a O-certificate ;
being consistent with a|U;;
query ‘a(y) =7 for all y € Dom(y;);
Uit1 := U; U Dom(g;);
fi;
od;
output 0;
end

First case: 2" < 8p(|z|,n). Then query ‘a(y) =7’ for all y € B™ and
then find My[z, @] and M|z, o] by checking all computations of My and M,
on [z, a]. The number of queries made to « is at most 8p(|z|,n).

Second case: 2" > 8p(|z|,n). Then any O-certificate is inconsistent with
any l-certificate. Execute the program shown on the Figure 5. Obviously,
that program makes poly(|z|,n) queries to . It remains to prove that if
o € Z, then the program outputs an ¢ € {0, 1} such M;[z,a] = 0.

Assume that o € Z. Let m = p(|z|,n). Obviously, it suffices to prove
that for some ¢ < m + 1 there exists no 1-certificate consistent with a|U;
or there exists no O-certificate consistent with «|U;. Assume that this is
not the case. Pick a 1-certificate ¢ consistent with a|U,,41. Then Dom(%))
intersects with U;41 \ U; = Dom(y;) \ U; (for all ¢ < m + 1) because ¢ and
@; are inconsistent and have the same value (equal to a(y)) on any y € U;.
Therefore, Dom (%) intersects with each of pairwise disjoint sets Uy, Uz \ Ut
Us\ U, ..., Upny1 \ Upn. Consequently |Dom(e)| > m + 1. Contradiction.

34

Lemma 4.6 The assertion (b") is true for K = BPP, L =P and Z = {7},
where Z =F or Z = Z(>1).

Proof. Consider only the case Z = Z(>1) (the case Z = F can be done
even simpler). Let M be a machine from n.u.BPP that is correct on Z.
We have to find a machine N in n.u.P such that Mz, o] = N[z, o] for all
x € B*,a € Z. Let us make use of Lemma 4.5. By that lemma it suffices to
construct a description K in n.u.NP-separation such that M[z, o] = K[z, o]
forall z € B*,a € Z (as M is correct on Z this implies that K is correct on
Z, too). In other words, we have to construct two machines Ng, Ny in n.u.NP
such that Ny[z, o] = Mz, a], No[z,a] =1 — M[z,a] for all z € B*,a € Z.
We construct machine Ny (and machine Ny can be constructed in the similar
way).

Machine N; on input [z,a] works as follows. Let n = ||| and let
k = poly(|z|,n) be the maximal number of queries that M can make on
inputs of the form [z,5], 8 € F,. Guess a set W C B" of cardinality
< 9k% + 3k and then query ‘a(y) =7’ for all y € W. Check if M[z,5] =1
for any 8 € Z, such that g|W = «|W. If this is the case, then accept.
Otherwise reject.

Obviously, if Ny accepts [z, a], then M|z, a] = 1. Thus, we have to prove
the converse: if M[z,«] = 1 then there exists a set W C B” of cardinality
< 9k? 4 3k such that

VB € Zy (BIW = W = Mz,] = 1). (11)
Assume, that M[z,a] = 1. For y € B” denote by w,(y) the probability of
the event “M on input [z, a] queries ‘a(y) =7"". Let

1
9k+3}'

As 3 epn waly) <k, we have |W| < (9k + 3)k. We claim that assertion
(11) is true. Assume that there exists § € Z,, such that §|W = o|W and
Mz, 5] = 0. Choose a € Z, satisfying these conditions and differing from
« on the least number of arguments. Denote

U={yeB"|aly) # 6y}
For any y € B” denote by 3, the function

ﬁy(Z) _ {ﬁ(z)v if z#y,

a(z), ifz=y.

W={yeB"[wly) =

35

We claim that wg(y) > 1/3 for any y in U possibly but one (where wg(y) is
the probability of the event “M on input [z, 5] queries ‘G(y) =?" 7). Indeed,
let y be an element of U. Then §,|W = «a|W and 3, differs from a on
less arguments than § does. Therefore Mz, 3,] = 1 or 8, ¢ Z, (that is,
#108, = 0). Consider two cases.

First case: g8, € Z,. Then M|z, 3,] = 1. Therefore, by Sublemma 4.4,
wg(y) > Prob, {M|[z, 8,,r] = 1} —Prob {M[z,8,r] =1} > 2/3-1/3 =1/3.

Second case: B, € Z,. Then #;8, = 0. This may happen only if
#18 = 1 and therefore this case can occur for the single y.

As 3 epr ws(y) < k, we have |U| < 3k 4 1. Since UNW = (), we have
wa(y) < gpgs for any y € U. Hence -y wa(y) < ﬁ(?)k—l— 1)=1. On
the other hand, by Sublemma 4.4

Z wa(y)

yelU
> Prob {M|z,a,r] = 1} — Prob, {M[z, 3,r] = 1}
>2/3-1/3=1/3.

The contradiction proves the lemma.O

Lemma 4.7 The assertion (b") is true for K = R, L = P and Z =
{Z(BPP)}.

Proof. Let M be a machine in n.u.R being correct on Z. By Lemma 4.5 it
sufices to construct a machine P in n.u.(NP N Co-NP) such that

Mz, 8] = Plz, 3] for any = € B*, 5 € Z,.

It follows immediately from the definition of the class R that there exists an
n.u.NP-machine P; such that M|z, 3] = Py[z, 5] for all z, 3.

Thus, we have to construct an n.u.NP-machine Py such that Fy[z, 3] =
1 — Mlz,p] for all z € B*, 3 € Z,. Machine Py on input [z,(8], § € F,,
works as follows. Let k = poly(|z|, n) be the maximal number of queries to
(3 which machine M can make during the work on input [z, 5], 5 € F,,. Let
us prove that if M[z,3] = 0 and 8 € Z,, then there exists a set W C B"
of cardinality less than 4k? such that M[z,~v] = 0 for all v € F,, such that
¥|W = B|W. Denote by wg(y) the probability of the event “M on input

[z, 8] queries ‘B(y) =7"". Let

W ={y € B" | wg(y) > 1/4k}.

36

Note that |W| < 4k?. Let us prove that M[z,v] = 0 for all ¥ € F,, such
that v|W = g|W. Assume the contrary: there exists v € F, such that
Mlz,v] # 0 and v|W = p|W. Then for at least one random input, M
accepts [z,7]. Let us fix such a random input and denote by U the set of all
the y € B™ such that the query ‘y(y) =7’ is made during the computation
of M on [z,v] for that random input. Obviously, |U| < k. Let

_ [y, ifyeU;
5(y)‘{ﬂ<y>, ify e B\ U.

If § belonged to 7, we would obtain a contradiction: the probability of the
event “M accepts [z,48]” is positive, hence, this probability is greater than
1/2. Therefore, by Sublemma 4.4,

Yo wply) > 1/2.

§(y)#£B8(y)
On the other hand, {y | é(y) # B(y)} C U \ W, consequently,
1 k 1
Z wg(y) < |U|E§ 1
§(y)#6(y)

Now we have to explain what todoif 6 ¢ Z,,, thatis, #,0 € [(1/3)2™, (2/3)2™].
We have 3 € Z,, that is, #:6 ¢ [(1/3)2", (2/3)2"]. Without loss of general-
ity we may assume that #,08 > (2/3)2". Then #10 > (2/3)2"—|U|. We have
|U| < k = poly(|z|, n). Therefore, we may assume that 2|U|+|W| < (1/3)2"
(if this is not the case, then 2™ < poly(|z|,n) and we can query ‘G(y) =7’
for all y € B™ to get know § and then can simulate the work of M on
[z,] for all random inputs). As 2|U| + |[W| < (1/3)2" < #6, there ex-
ists a set V' C B™ of cardinality |U| such that V. N (U U W) = § and
such that 6(y) = 0 for all y € V. Pick such a V and change the value
of § on all the y in V. Now we have #16 > (2/3)2", therefore § € Z,.
As §(y) = 7v(y) for any y € U, we have Prob{M accepts [z,d]} > 0.
Therefore, Prob {M accepts [z,d]} > 1/2. Recall that Mz, 3] = 0, that
is, Prob {M accepts [z, 3]} = 0. Hence, by Lemma 4.4,

> wg(y) > 1/2.

§(y)#£B8(y)
On the other hand,

| [\
)

N | —

1
> wsly) < (UI+ V) <
5(y)#B(y)

Erl

37

Table 2:

NP-separation | Co-NP-separation [NP N Co-NP [BPP| R |R N Co-R
Z(<1) - + + + |+ +
Z(=1) - - - + |+ +
Z(>1) + - + + |+ +
Z(F) + ~ (o) + + |+ +
Z(BPP) + ~ (o) + - |+ +
Z(R) + - (o) N
Z(RNCo-R) - - - - | - -

The contradiction shows that M[z,v] = 0 for all v € F,, such that v|W =
B,

Thus, machine Py on input [z, 3] accepts if there exists a set W C B”
of cardinality < 4k? such that M[z,~] = 0 for any v € Z, such that 8|W =
¥|W.O

The above proven facts on bases are shown on the Table 2. The sign
“+” in a line of Table 2 indicates that the assertion (b”) is true for the
corresponding principal superbase, the corresponding class M and for N =
P. The sign “” in a line of the table indicates that the assertion (a”) is
true for the corresponding principal superbase, the corresponding class K
and for £ = P. The letter “o” means that the proof was ommited (because
we do not need the corresponding assertion).

As simple consequences from the above lemmas we get the following four
theorems.

Theorem 4.1 There exists an oracle A for which RANCo-RA # P4 (17th
line in the Table 1).

Proof. Take the base Z(RN Co-R).O

Theorem 4.2 There exists an oracle A such that NP#-sets are inseparable,
Co-NP4.sets are separable and PA = BPPA (8th line in the Table 1).

Proof. Take the base Z = Z(<1).0
Theorem 4.3 There exists an oracle A such that NP4 N Co-NP4 £ P4
and BPP# = P4 (141h line in the Table 1).

38

Proof. Take the base Z = Z(=1).0

Theorem 4.4 There exists an oracle A such that NP -sets are separable,
Co-NP4.sets are inseparable and BPP4 = P4 (5th line in the Table 1).

Proof. Take the base Z = Z(>1).0

To obtain furhter consequences from the lemmas we need the following
simple

Lemma 4.8 If the assertion (b") is true for the classes M and N and for
both superbases {Z'} and {Z"}, then il holds also for M and N and for
superbase {Z' + 7'""}.

Proof. Obviously.O

Theorem 4.5 There exists an oracle A such that NP4 -sets and Co-NP4-
sets are inseparable, NP4 N Co-NP# = P4 and BPP4 = P4 (11th line
in the Table 1).

Proof. Take the base Z = Z(<1) + Z(>1).0

Theorem 4.6 There exists an oracle A such that NP -sets are separable,
Co-NP4-sets are inseparable and P4 £ RA (7th line in the Table 1).

Proof. Take the base Z = Z(R) 4+ Z(>1).0

Theorem 4.7 There exists an oracle A such that NP -sets are separable,
Co-NPA sets are inseparable, BPP4 # P4 R4 = P4 (6th line in the
Table 1).

Proof. Take the base Z = Z(BPP) + Z(>1).0

Theorem 4.8 There exists an oracle A such that NP -sets are inseparable,
Co-NPA-sets are inseparable, BPP4 #* P4, NP4 N Co-NP4 = P4 and
R# = P4 (12th line in the Table 1).

Proof. Take the base Z = Z(<1) + Z(>1) + Z(BPP).O

Theorem 4.9 There exists an oracle A such that NP#-sets are inseparable,

Co-NP*-sets are inseparable, R* # P4 and NP4 N Co-NP4 = P4 (13th
line in the Table 1).

39

Proof. Take the base Z = Z(<1)+ Z(>1) + Z(R).O

Theorem 4.10 There exists an oracle A such that NP4 N Co-NP4 # P4,
BPP4 £ P4 and R* = P# (15th line in the Table 1).

Proof. Take the base Z = Z(=1) + Z(BPP).O

Theorem 4.11 There exists an oracle A such that NPANCo-NPA £ P4,
R4 £ P# and RA N Co-R* = P4 (16th line in the Table 1).

Proof. Take the base Z = Z(=1) + Z(BPP).O

Theorem 4.12 There exists an oracle A such that PA # NP4, NP4 -sets
are separable, Co-NP*-sets are separable and BPP4 = P4 (second line in
the Table 1).

Proof. This is the only case in which the superbase consists of more than
one base. For any j € N, 7 > 1 consider the base Z7 defined as follows:

a €7 o #ia<n/j

Take the superbase Z = {Z7 | j > 1}.
To prove (a”) for £ = NP, £ = P take the description

- . 1, if #10& Z 1
Klo] = { 0, otherwise.

Let us prove (b") for M = NP-separation, N = P. Let M = (Mg, M;) be
a pair of machines in n.u.NP and let Z7 be a base in Z such that My[z,a] = 0
or Mi[z,a] = 0 for all z € B*,a € Z7. We have to construct a machine
N € n.u.P and a base Z7' C Z7 such that M[z,a] < N[z, a] for all z € B*,
o€ Z¥'. Let j' = 2j. We have to construct a polynomial decision tree that
for given 2 € B* and a € Z7' finds an i € {0,1} such that M;[z,a] = 0.

Let us be given z € B* and @ € Z7'. Let n = ||e||. Call any function
having the form

Bl Query n,[c, 5],

where § € Z;Z:, M;[z,5] = 1 and ¢ is an accepting computation of M; on
input [z, 3] an i-certificate (¢ = 0, 1). Let us prove that any O-certificate is in-
consistent with any 1-certificate. Assume that a 0-certificate ¢ is consistent
with a 1-certificate ©¥b. Then #;¢ < 2”—] and #1¢ < % Set

o(y), if y € Dom(p);
Bly) = { ¥(y), if y € Dom(v);

0, if y € B™ \ (Dom(¢) UDom(%)).

40

Then #.06 < % + 2”—] = ?, that is, 8 € Z7 and Mo[z, 3] = M[z,5] = 1.
The contradiction shows that any O-certificate is iconsistent with any 1-
certificate.

Further we can reason just as in the proof of Lemma 4.5.

Let us prove (b”) for M = Co-NP-separation, N' = P. Let M =
(Mo, My) be a description in n.u.Co-NP-separation and Z7 be a base such
that M is correct on Z7, i.e., Mo[z,a] = 1 or My[z,a] = 1 for all z € B*,
a € Z!. We have to find a base Z¢' C Z/ and a polynomial decision tree N
that for given z € B* and o € Z7', finds an i € {0, 1} such that M;[z, o] = 1.
Let j/ = j.

The decision tree N on input [z, «] works as follows. Let n = |||
Obviously, 0,, € Z7, therefore, My[z,0,] = 1 or M;[z,0,] = 1. Find first an
i € {0, 1} such that M;[z,0,] = 1 and an accepting computation ¢ of M; on
[,0,]. Set Wy = Queryas,[c,0,]. Ask ‘a(y) =7 for all y € Wy. If a(y) =0
for all y € Wy, then M;[z,a] = 1. In this case output 7 and halt. If a(y) =1
for some y € Wy then let

_ a(y)7 if yE WO;
ﬁl(y)_{o, if y € B™\ W.

If 31 ¢ Z7, then output 0 and halt (in this case @ € Z7). Otherwise find an
i € {0,1} such that M;[z, 1] = 1 and repeat all done before, i.e., find Wy,
ask ‘a(y) =7 for all y € Wy and so on.

After at most & = [n/j]+ 1 loops we will halt. Indeed, if we have done
k loops and have not halt, then we have defined 3, fs, ..., B¢ such that

0 < #1061 < #1062 < ... < #10sk

(hence #18), > k) and B € Z7 (hence #16; < k).
The assertion (b") for M = BPP, N’ = P can be proved in the similar
way using the technique from the proof of Lemma 4.3.0

Let us present one more application of the universum method consisting

in the new proof of a known theorem.

Theorem 4.13 (Hartmanis and Immerman [HI 86]). There exists an oracle
A such that P4 # NP4 N Co-NP#4 £ NP4 and the class NP2 N Co-NP4
has an m-complete language.

Proof. Tt is sufficient to construct an oracle A such that NP4 N Co-NP4 #
P4, NP4 74 Co-NP4 and the class NP4 N Co-NP# has an m-complete

41

language. The oracle A will have the form B @ H, where H is a PSPACE-
complete set. Thus, we have to construct the oracle B.

As Theorem 3.1 does not work in our case, we present the whole con-
struction of B. Take the universum

V={AeQ|#(AB") =1 for any even n and
#1(A|B") <1 for any odd n}.

The language in NP4\ Co-NP# will be
LB = {1" | nis odd and Ju € B" B(u) = 1}.
The language in NP# N Co-NP# \ P4 will be
LP = {1"| nis even and Ju € B" ' B(1u) = 1}.

Obviously, LP € NP4 and LY € NP% N Co-NPA for any B € V (recall
that A= B & H). Thus, we have to construct an oracle B € V such that

1. LB ¢ Co-NP4;
2. LB ¢ P4,
3. NP% N Co-NP# has a complete language.

To this end let us enumerate all the polynomial-time deterministic and non-
deterministic oracle machines and all the pairs of nondeterministic polynomial-
time oracle machines. In usual way we can construct a chain

oIt DI DI'sD ...

of intervals such that any I'; intersects with V and the following holds. If
¢ = 3k, then kth nondeterministic machine does not accept the language
{0,1}*\ LB for all B € I; N V; if i = 3k 4 1, then kth deterministic
machine does not recognise the set L¥ for all B € [; N V; and if i = 3k + 2,
then either the languages accepted by the nondeterministic machines in
kth pair are complementary for all B € I'; NV or those languages are not
complementary for all B e[, NV,

Pick any oracle B in ();2; I'; N V. The assertions 1 and 2 are true. It
remains to prove that NP4 N Co-NP# has a complete language. Denote by
N; the jth nondeterministic polynomial-time Turing machine and by p;(|z|)
a polynomial restricting its running time.

42

Recall that for C' € Q, C™ denotes the word of length 27! — 1 encoding
C’s value on words of length at most n.

Let us note that a pair (N;, N;) of NP-machines defines a language in
NPBP 0 Co-NPP iff N;(z,B® H) + Ny(z,B® H) = 1 for all z. As
complete language we take the following language:

LB = {1901k0B7z0r: (=D +rx(=) | N (2, B H) = 1
and N;(z,C @ H)+ Ng(z,CHH) =1
for all C € VNT(B | B}

Let us prove that LB is in NP4 N Co-NP4. To this end let us prove that
LB is in NP4 (the remaining part LB € Co-NP# can be proved entirely
similar).

Let us prove that for given oracle B and word w by making polynomial
number of queries we can nondeterministically, within polynomial space,
accept w iff w e LB.

Let w be an input word. Decide first whether w has the form 1701%0D?z0rs (2D +rx(l=)
for some D € V. Then decide whether B” = D" and whether N;(z,C&H)+
Ni(z,C®H) = 1forall C € V such that C"™ = D", (this can be done within
polynomial space since both values N;(z,C' @ H) and Ni(z,C @ H) depend
only on the value of C' on words of length at most p;(|z|) + pr(|z]), there-
fore all the necessary information about C' can be written within polynomial
space). If this is not the case, then reject. Otherwise run N;(z, B& H) and
accept if N;j(z, B H)=1.

In usual way we can convert our nondeterministic polynomial-space ma-
chine into nondeterministic polynomial-time machine with oracle H.

Thus, it remains to prove that L® is complete in NP4 N Co-NPA. Let
(N;, Ni) be a pair of nondeterministic polynomial-time oracle machines such
that N;(z,B& H) + Ni(z, B@ H) = 1 for all . The construction of the
oracle ensures that there exists n such that N;(z, C&H)+ Ny(z,CHH) =1
for all C € VNI(B | BS"). Let us fix such an n. The mapping =
170150B7z0Ps (2D +re(l2D) reduces LNJA to LB. O

Remark 4.1 In the similar way we could prove all the previous theorems
in a stronger form: we could add the assertion that all the involved classes
have complete problems.

43

5 When the universum method cannot be used

We say that the universum method can be applied to prove that there exists
an oracle A such that K4 £ £4 and M4 < N4 if there exists a superuni-
versum V such that (a’) and (b’) are true. In this section we present two
theorems that cannot be proven by the universum method.

Theorem 5.1 [Ko 89] There exists an oracle A such that P4 = NP4 #
PSPACE*.

Theorem 5.2 There exisls an oracle A such that P4 # R4 = PSPACE*.

In fact, we prove that the following corollaries of Theorems 5.1 and 5.2
cannot be proven by the universum method.

Corollary 5.3 There exists an oracle A such that NP4 = Co-NP4 #
PSPACE*

Corollary 5.4 There exists an oracle A such that P4 # PSPACEA and
Co-NP4 C RA.

Both Theorems 5.1 and 5.2 can be proven by a method that may be called
“coding method” because, in those proofs, some hardly computable infor-
mation is encoded via oracle values, to ensure the truth of positive asser-
tion (./\/lA < J\"A). To prove Theorem 5.1, one needs a lower bound by
[H 86, Y 85] on complexity of computation of PARITY function by means of
AND,OR-circuits of bounded depth, which has a rather complicated proof.
Theorem 5.2 was proved in the paper [R 78] (in fact a less strong asertion
that P # R = NP under some oracle was proved there but the proof is
good also for our case).

Theorem 5.5 The universum method cannot be applied to prove Corollary
5.3, i.e., there exists no superuniversum V such that (a’) and (b') are true

for K = PSPACE, £ = NP, and M = Co-NP, N’ = NP.

Proof. Let V be a universum. Say that an interval I n-isolates an oracle
AinVif Ael and AIB" = B|B" forany B € VNI. A set W C B*
n-isolates an oracle A in V if the interval I'(A|W) n-isolates A in V. Define
the size of an interval I' = I'(¢) to be the size of Dom(y). Say that V' is
thin if there exists a polynomial p(n) such that for all A € V and all n € N,

44

there exists a set W C B* of size p(n) that n-isolates A in V. Consider two
cases.

First case: there exists a universum V in V that is thin. Let p(n) be the
corresponding polynomial. Let us prove that (a’) is false in this case. Indeed,
let K be a n.u.PSPACE-machine. Let us construct a n.u.NP-machine L such
that KV = LY. Machine L on input (z, A) works as follows. Let the length
of queries of K on input z be bounded by the polynomial ¢(|z|). For every
t < ¢(|z]) guess a set W; C B* such that size (W;) < p(z). Ask ‘A(y) =7’ for
all y in W;. If there exists no B € V such that the interval I'(A|W;) i-isolates
B in V for all ¢ < ¢(|z|), then reject. Otherwise, pick such B. Note that if
Ais in V, then A|B=(e) = B|B<e(l2]) and therefore K (z, A) = K (z, B).
Then compute K (z, B) and accept if K(z,B) = 1.

The total number of queries made to A is Z?ﬂgnp(i) = poly(|z|). The
maximal length of query is max;<(|-|) p(t) = poly(|z|). Thus, L € n.u.NP.

Second case: all the universums in V are not thin. We claim that in this
case (b’) is false for M = Co-NP, N/ = NP. Let V, Vi, Vo, ..., Vi, ... be
an enumeration of universums in V. Given an oracle A, denote by m'y(n)
the minimal size of set n-isolating A in V;. For all « € N, fix a sequence
{B"}, n € N of oracles such that B € V; and such that for any fixed i,
the function m%m(n) grows su_perpolynomially, i. e., for any polynomial p
there exists an n such that mi,,(n) > p(n). Obviously, the set of natural
numbers can be partitioned into subsets (g, @1, @2, ..., @i, ...such for any
fixed ¢ € N, the function m%m (n) grows superpolynomially when n ranges
;. Obviously there exists a description M € n.u.Co-NP such that

1, if Vy € B*A(y) = B"(y), where i
M@1™ A) = is the number such that n € Q;;

0, otherwise.

Let us prove that there exist no N € n.u.NP and no 7 € N such that
MYi = NV Suppose the contrary: such N and such i exist. Denote by
p(n) the polynomial bounding the size of Query (1%, A). Take an n € Q;
such that m,,(n) > p(n). Then for all A € Vj,

AB" = B"|B" & M(1",A) =1 & N(1", A) = 1.

In particular, N(l”,Bm) = 1. Pick an accepting computation ¢ of N on
input (1%, B™™) and denote W = Queryn(c, B™). Then size (W) < p(n)
and N(1",A) = 1 for all A € ['(B™|W). Therefore, A|B" = B"*|B" for
all A € V; nD(B™|W) that is, W n-isolates B in V'. The obtained
contradiction proves the theorem.O

45

Theorem 5.6 Corollary 5.4 cannot be proven by the universum method,
that is, there exists no superuniversum V such that (a') and (b') hold for

K = PSPACE, £ = P and M = Co-NP, ' = R.

Proof. Say that a universum V is identifiable if there exists a polynomial
decision tree P such that the set Queryp(1™, A) n-isolates A in V for all
n € N and all A € V. Say that a universum M is randomly identifiable if
there exists a polynomial decision tree P and a polynomial ¢ such that

i

N | =

Prob gan [Query p(r17, A) n-isolates A in V] >

for all n € N, A € V (the probability is with respect to the uniform distri-
bution over r € B4™)). Obviously

(V is identifiable) = (V is randomly identifiable)
— (V is thin).

Lemma 5.1 Any randomly identifiable universum s identifiable.

Proof. Let V be randomly identifiable. For n € N denote by Z, the set
{B|BS" | B € V}. Let us prove that |Z,| < 2P°W(*), As V is thin, there
exists a polynomial p(n) such that for all n € N and all B € V there exists a
set W C B* of size p(n) such that C|B<" = B|B<" for any C' € VNI['(B|W).
Thus, |Z,| is not greater than the cardinality of the set

{B|W | W C B*, size(W) < p(n), B € Q}.

Evidently the number of sets of size at most p(n) does not exceed (2°(?)+1)r(7),
Thus, |Z,] < (200 +1)pln)0(n) — gools()
Let P be the polynomial decision tree and ¢ be the polynomial such that

Prob _gom [Query p(r17, A) n-isolates A in V]

> (12)

[

for all n € N, A € V. Denote by s(n) the polynomial such that size
Query p(r1*, A) < s(n) for all r € B, Obviously, for all n and all
r e B, Query p(r1", A) depends only on AB=*(") | Let t(n) be a poly-
nomial such that |Z5(n)| < 2")_ Let us prove that for any n there ex-
it 71, Ty € B?(") such that for all A € V at least one of the sets
Queryp(r;1",A), j = 1,2,...,t(n), n-isolates A in V.

46

Recall that for any partial function a: B* — B, & denotes the oracle

a(z) = a(z), if z € Dom(a);
Lo, if z € B*\ Dom(a).
Obviously, for any A, n and r € B4,

Query p(71", A) n-isolates A in V & (13)
Queryp(ﬂ”,ArB\s(”)) n-isolates A|/B\3(”) in V.

Therefore the assertion (12) implies that
Prob g [Query p(r1", &) n-isolates & in V] > 1/2
for any o € Z(,,). Take random uniformly distributed o € Zy(,,). Then

PrObrqu("),anS(n) [Query p(r1", &) n-isolates & in V]

> 1/2.
Therefore, there exists r; € B2 such that
PI'ObanS(n) [Query p(711", &) n-isolates & in V] > 1/2.
Let

7' ={a € Zyy | Queryp(71", &)

does not n-isolate & in V'}.
Reasoning in similar way we can prove that there exists ry € B?(") such that

Prob ez [Query p(721™, &) n-isolates & in V] > 1/2.

Let
Z" ={a € Z"| Queryp(r21™, &)
does not n-isolate & in V'}
and so on. So we define the words ry, r9, ..., 7, ... and the sets 2/, Z", ..,

Z(i), Evidently, . .
12649)] < (1/2)]20)

for all i, therefore for i = t(n) we get Z0+1) = (). Thus for any o € Zs(n)
there exists an ¢ < ¢(n) such that Wp(r;1", &) n-isolates & in V. By (14),

47

this means that for any A € V there exists ¢ < ¢{(n) such that Wp(r;17, A)
n-isolates A in V.

The decision tree that for given (1", A) (A € V) n-isolates A in V
works as follows. It simply executes P on inputs (7117, A), (721", A), ...,

<ft(n)1n, A>.|:|

Let us continue the proof of the theorem. Consider two cases.

First case: there exists a randomly identifiable universum V € V. Then
by above lemma the universum V is identifiable. Therefore, for any K €
n.u.PSPACE there exists a polynomial decision tree L such that KY = LY
(first identify oracle A and then find K(z, A)). Therefore, (a’) is false for
K = PSPACE, £ =P.

Second case: all universums V € V are not randomly identifiable. Let
us prove that (b’) is false for M = Co-NP, N'=R.

Let Vo, Vi, ..., Vi, ... be an enumeration of universums in V. Denote
by mig(n) the least s € N such that there exists a decision tree P such that
Prob ,.cps [Query p(r1™, B) n-isolates B in V;] > 1/2, and size Query p(r1", B) <
s for all r € B®.

Then we know that for any 4 there exists a sequence {B*"*}, n € N, of
oracles in V; such that the function n +— m%m(n) grows superpolynomially.
Obviously, the set N can partitioned into subsets QJg, @1, ..., &i, ... such
that for each ¢ € N the function m%m (n) grows superpolynomially when n
ranges ;. Obviously, there exists a n.u.Co-NP-description M such that

M(1",A) =1 A|B" = B"|B".

for any ¢ € N and any n € (J;. Suppose that there exist a description N in
n.u.R and i € N such that M"Y = NV:.

Let ¢(n) be the length of random strings used by N on inputs of the
form (1%, A) (A € Q). For r € B2 denote by N(1",r, A) the output of N
on input (1", A) and random input r, and denote by Queryn(17",r, A) the
set of queries to A made by N during the work on the input (1%, A) and the
random input r. Then

M(1™A)=0=
Probrqu(n) [N(1™,r,A) =1] =0, (14)
M(1", A) = 1= Prob __gyw [N(1",r,A)=1] > 1/2
for any A € V. In particular,

PI’Obrqu(n) {N(l”’ T, Bni) = 1} > 1/2

48

for all n € ;. Assertion (14) implies that if A € V; and A|B™ # B™|B",
then N(1%,r, A) = 0 for all r € B1("),

Thus, the set Query n (17,7, B™) n-isolates B™ in V; for any r € B(*)
such that N (17,7, B™) = 1. Therefore m%m (n) grows polynomially when n
ranges ;. The obtained contradiction finishes the proof.O

References

[BGS 75] T. Baker, J. Gill and R. Solovay. “Relativization of P=?NP Ques-

[GS 88]

[H 86]

[HI 86]

[Ko 89]

R 78]

[S 83]

[Y 85]

tion”, SIAM Journal on Compuling, 1975, pp. 431-442.

J. Grollman, A. L. Selman. “Complexity measures for public-key
cryptosystems”, STAM J. on Computing, 1988, Vol. 17, No. 2,
pp. 309-335.

J. Hastad. “Almost optimal lower bounds for small depth cir-
cuits”, in: S. Micali, ed., Advances in Computer Research, Vol. 5:
Randomness and Computation (JAI Press, Greenwich, CT); see
also Computational Limitations for Small Depth Circuits (MIT
Press, Cambridge, MA, 1986).

J. Hartmanis, N. Immerman. “On complete problems for NP N
Co-NP”, Proc. of Intern. Collog. on Automata, Languages and
Programming 1985, pp. 250-259. Springer-Verlag Lecture Noles in
Computer Science, Vol. 194, 1985.

Ker-I Ko. “Relativized polynomial-time hierarchies having ex-
actly k levels”, STAM Journal on Comput., 1989, Vol. 18, No. 2,
pp. 392-408.

C. Rackoff. “Relativized Questions Involving Probabilistic Algo-
rithms”, Proc. of 10th Annual ACM Symp. on Theory of Comp.,
1978, pp. 338-342.

M. Sipser. “A complexity Theoretic Approach for Randomness”,
15th Annual ACM Symp. on Theory of Computing, 1983, pp. 330-
335.

A. C. Yao. “Separating the polynomial time hierarchy by ora-
cles”, Proc. 26th Ann. IEEFE Symp. on Foundations of Computer
Science, 1985, pp. 1-10.

49

