Theoreticai
Computer Science

ELSEVIER Theoretical Computer Science 157 (1996) 227-258

A general method to construct oracles realizing given
relationships between complexity classes

Andrei A. Muchnik®', Nikolai K. Vereshchagin®* '3

@ Institute of New Technologies, Nizhnjaa Radishchevskaja 10, Moscow, Russia 109004
b Department of Mathematical Logic, Moscow State University, Moscow 119899, Russia

Abstract
We present a method to prove oracle theorems of the following type. Let Ki, ..., K2, and
Ly, ..., Loy be complexity classes. The method provides a general framework for constructing

an oracle 4 such that K51 | # Kj! fori=1,...,n and L‘z",,l # L;, for j = 1,...,m. Using this
method we obtain several results of this kind. The hardest of them is the existence of an oracle
A such that P? # NP*, P* = BPP" and both Co-NP“-sets and NP“-sets are P*-separable. We
exhibit also two theorems that cannot be proved by this method.

1. Introduction

When people realized that P # NP is likely true but hard to prove (and impossible
to prove by relativizable arguments [1]), they began to prove interesting theorems
under P # NP hypothesis. Interesting problems of this kind arise in cryptography,
where the reliability of all known protocols is based on complexity assumptions even
stronger than P # NP. A very challenging problem is to construct cryptographic
protocols which are provably secure if P % NP. In the present paper we ascertain that
many complexXity assertions cannot be proved by relativizable arguments even under
the P #£ NP assumption and under stronger assumptions. In other words, we construct
oracles relative to which certain Boolean combinations of the P # NP assumption
and stronger ones are true. Moreover, we investigate a general powerful method to
prove such theorems and in the last section we present some theorems which cannot
be proved by that method.

* Corresponding author. E-mail: ver@ium.ac.msk.su, ver@math.math.msu.su.

! This research was in part supported by a grant from the American Mathematical Society.

2 This research was in part supported by the grant MQTO000 from the International Science Foundation, a
NAS/NRC COBASE grant, and NSF grant CCR-8957604. Work done in part while visiting the University
of Rochester.

3 All the results in this paper are joint results by both authors. The text was written by the second author.

0304-3975/96/$15.00 © 1996 — Elsevier Science B.V. All rights reserved
SSDI 0304-3975(96)00161-1

228 A.A. Muchnik, N.K. Vereshchagin/ Theoretical Computer Science 157 (1996) 227-258

Many results of this sort (when an oracle is constructed under which some Boolean
combination of complexity assertions is true) have appeared in literature. The following
results among them deal with the classes considered in the present paper. Rackoff in
[13] constructed oracles 4 and B such that P = R? £ NP* and P? # R® = NP?. In
[1], it was proved that P = NP N Co-NP # NP under some oracle.

In the present paper we prove, for example, that there exists an oracle under which
P # NP and NP-sets are separable, thus we solve the problem left open in [5].4
This implies that reliability of all the cryptographic schemes based on the existence
of one-way functions cannot be derived from P # NP by relativizable arguments
(since one-way functions do not exist if NP-sets are separable). Moreover, we show
that one cannot prove using relativizable arguments that NP-sets are inseparable even
under hypothesis that both Co-NP-sets are inseparable and P # R. The strongest result
of our paper states that there exists an oracle under which P # NP and NP-sets are
separable and Co-NP-sets are separable and P = BPP. In other words, it is impossible
to prove by relativizable arguments even the disjunction “NP-sets are inseparable or
Co-NP-sets are inseparable or P % BPP” under the P # NP hypothesis.

The method used in the present paper goes back to [1]. We call it “the universum
method”. In the present paper we refine that method and apply it to prove the existence
of oracles relative to which certain Boolean combinations of the assertions P = NP,
P =R, P =BPP, P = NP Co-NP, P = RN Co-R, “NP-sets are P-separable”, and
“Co-NP-sets are P-separable” hold (we are successful in constructing oracles for 13
of 17 possible combinations, thus 4 problems of this kind remain unsolved).

Roughly speaking, the method works as follows. Suppose we want to prove that
there exists an oracle 4 such that P? £ BPP“ and P = R". First, we define a subset
V (called the universum) of the set of all oracles. Second, we choose a sufficiently
powerful oracle A (in all known applications we can take any PSPACE-complete set
as H). Third, we consider machines having two oracles: the oracle / and a varying
oracle B ranging over V. (Thus, every machine of this type accepts a subset of B* x V/,
where B = {0,1} is the input alphabet.) Finally, we prove that there exists a BPP-
machine of this type which recognizes a subset of B* X V' recognizable by no P-machine
of this type and prove that for any R-machine of this type there exists a P-machine of
this type recognizing the same subset of B™ x V.

Another general method close to ours was presented in the paper [3]. The extension
of that method was applied by Fortnow and Rogers in [4] to prove the existence of
oracles relative to which certain Boolean combinations of the assertions P = NP, P =
UP, P = NP N Co-NP, “NP-sets are P-separable”, and “Co-NP-sets are P-separable”
hold. They succeeded in constructing oracles for all possible combinations.

In a sense our method (as well as the method of [3]) is a special case of the forcing
method (see Section 5.2.1). In Section 6, we prove two negative results that can be
interpreted as that both methods fail to prove the following two theorems: the theorem

4 Independently, this was proven in [3].

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 229

that P # R = PSPACE under some oracle [13] and the theorem proven by Ko in [9]
that P = NP # PSPACE under some oracle.

In the next section we introduce some notation. In Section 3, we prove a sample
theorem in full detail to exhibit all main ideas of the method in the simplest situation.
In Section 4 we obtain the main results applying our method. We give there also a
simple proof of the result of [6] that there exists an oracle relative to which P #
NP N Co-NP # NP and the class NP N Co-NP has a complete problem. In Section
5, we formalize the universum method and formulate two general theorems on the
method. This makes possible to formulate what means that the method fails to prove
the two above cited theorems. All theorems in Sections 5 and 6 are presented without
proofs. The proofs can be found in [11].

2. Preliminaries

We restrict ourselves to binary alphabet B = {0,1}. The set of all binary words is
denoted by B*. The set of all functions from B* into B is denoted by Q. A language
L CB* is identified with its characteristic function. We say that a language L separates
languages Ly and Ly if Lo(x) = ! = L(x) = 0 and Li(x) = 1 = L(x) = 1 for any
x € B". Call any language in a class C of languages a C-set. An oracle is an element
of Q.

Denote by |y| the length of word y.

Let 4 be an oracle.

A language L belongs to the class P# if there is a polynomial-time Turing machine
M with oracle 4 that recognizes L.

A language L belongs to the class NP if there is a polynomial-time nondeterministic
Turing machine N with oracle 4 that accepts L.

A language L belongs to the class Co-NP# if B*\ L is in NP

A language L belongs to the class BPP* if there is a polynomial-time probabilistic
Turing machine M* with oracle 4 such that Prob[M#(x) = 1] > 2 for all x € L and
Prob[M“(x) = 1] < % for all x & L.

A language L belongs to the class R? if there is a polynomial-time probabilistic
Turing machine M* with oracle 4 such that Prob[M“(x) = 1] > 1 for all x € L and
Prob[M4(x)=1]=0 for all x & L.

A language L belongs to the class PSPACE” if there is a polynomial-space Turing
machine M with oracle 4 that recognizes L.

We say that NP?-sers (Co-NP*-sets) are separable if any two disjoint NP*-sets
(Co-NP*-sets) are separable by a P?-get. If this is not the case, then we say that
NP -sets (Co-NP*-sets) are inseparable.

Let N denote the set of nonnegative integers. Denote by B” the set of all binary
words of length n. Denote by BS" (B>") the set of all binary words of length at most
n (at least n, respectively).

Denote by f|D the restriction of function f to set D.

230 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258

Let us define the binary operation & on languages as follows: B¢ C = {Ou|u €
B} U{lv|v € C} (we denote by xy the concatenation of words x and y).
An interval is a set of oracles having the form

I'(p) = {4 € Q|Vy € Dom(¢) A(y) = ¢(»)},

where ¢ is a function from a finite subset of B* into B, and Dom(¢) denotes the
domain of ¢.

For a finite set M C B* denote by maxlength(M) the max,cy |y| and denote by |M]|
the number of elements in M.

Let P be a deterministic oracle machine. Denote by Queryf;(x,B @ H) the set of all
y € B* such that P asks ‘B(y) =? during the computation on input x with oracle
Ba® H. Let N be a nondeterministic oracle machine and ¢ be one of its computations
with oracle B & H on some input. Denote by Queryf,(c,B @ H) the set of all y € B*
such that N asks ‘B(y) =?" during the computation c¢. By P- [NP-, BPP-] machine we
mean a polynomial-time deterministic [nondeterministic, probabilistic] oracle machine.

For a function i defined on a finite set D denote by #{ the number of y € D such
that Y(y) = 1 (the notation #y is defined in the similar way).

3. A sample application

Theorem 1. There exists an oracle A such that NP*-sets are inseparable and Co-NP"-
sets are separable.

Proof. The proof of this theorem is very close to the proof of the theorem from [1]
stating that P4 = NP 1 Co-NP* £ NP for some oracle 4.

Define the sequence of integers ; by induction ng = 1, my = 22, Let S = {n; |
i € N}. Consider the following set of oracles:

V={BegQ]|forall ne€S there exists at most one y € B" such that B(y) =1
and for all n € N\ S there exist no y € B” such that B(y) = 1}.
Let H be a PSPACE-complete language. The oracle 4 will have the form B & H,
where B is in V. Thus, we have to define the oracle B.
We construct B in such a way that the following sets:
L8 ={1" | n €S and there exists y € B"~' such that B(0y) = 1},
L2 ={1" |n €S and there exists y € B"™' such that B(1y) = 1}
are P-inseparable. Obviously, both L§ and L? belong to NP?®” and are disjoint for
any Be V.
So we have to construct an oracle B € V such that

(1) LE and L? are separable by no P*®#_set, and
(2) any two disjoint Co-NP?®# _sets are separable by some PP®7 _get.

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 231

Let M be a deterministic or nondeterministic machine. Write M4(x) = 1 if M with
oracle 4 accepts x and write M“(x) = 0 otherwise. Say that a pair (Np,N;) of NP-
machines is correct on A if the languages {x|N§(x) = 0} and {x|N{(x) = 0} are
disjoint. The assertion (1) means that for any P-machine P the language {x | PFH(x) =
1} does not separate L5 from L? The assertion (2) means that for any pair (N, N;)
of NP-machines being correct on B @ H there exists a P#®_set separating the set
{x\N(f@H(x) = 0} from the set {x|NlB€BH(x) = 0}. Let Py, Py, ..., P, ... be an enu-
meration of P-machines and (Noo, No1), (Nio, N11),..., (Njo,Nj1),... be an enumeration
of pairs of NP-machines.

In step i, we construct an interval I'; intersecting with 7 in such a way that
I'>lrh,>I3>--- and the following holds:

if i = 2k + 1, then the language {x|P;®*”(x) = 1} does not separate L§ from L%
for any Be I'; NV and

if i = 2k + 2, then either the pair (Ngo,Ni) is not correct on B & H for any
BeT;NV, or the languages {x|Np>"(x) = 0} and {x|NZ®(x) = 0} are separable
by a PP®¥ set for any BeI'inV.

Obviously for any oracle B in the set ¥ N (2, I'; the assertions (1) and (2) will
hold.

We start with I'o = €. Let us explain what to do on each step. Let

I'ioy =I'(¢)={B € Q| B|Dom(¢) = ¢}

be the interval constructed on (i — 1)th step. On the ith step we make the following.
Consider two cases.

First case: i = 2k + 1. Pick n € S greater than maxlengthDom(¢) and so large
that P; on input 1” makes less than 2"~' queries to oracle. Let C be the oracle in
I';_, being equal to zero on all the words not in Dom(¢). Without loss of generality
we may assume that PkC@H (1") = 0 (other case is entirely similar). We know that
| Query,%;(l", C @ H)| is less than the number of words of length n — 1. Pick a word
z of the form lu in the set B” \ Query,gk(l",C @ H). Note that z is not in Dom(¢)

since n > maxlength(Dom(¢)). Let
Fi={BecTli_|Bz)=1, B(y)=C(y) for all y € Query}, (1".C & H)}.

Then PPH(17) = Pe®H(1") = 0 and LE(1") = 1 for any B € I}, and I, NV is
nonempty since CU {z} isin I N V.

The reader can see that, in fact, we have proved the following lemma, whose analog
will be used in all other proofs.

Lemma 1.1. If an interval I intersects with V then there exists no P-machine P such
that PP®H separates L8 from L? for any Be I'nV.

Second case: i = 2k + 2. Consider two subcases.
First subcase: There exists an oracle C € I';,_; NV such that the pair (N, Nyy) is
not correct on C & H. Then pick x € B* such that Ny™ (x) = NS®7 (x) = 0.

232 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258

Let
I'i= {B el |B(y)=C(y)

for all y € U Query,?,m(co, CHH)YU U Queryf,“ (c1,C & H)} .

[Ci

The union is over all the computations of Ny (N;;) on input 1”7 with oracle C @ H.

Second subcase: the pair (Nyp, Ny} is correct on C@ H for any C € I';.1N V. Then
let I'; = I';_1. We have to prove that the sets {x | N5 (x) = 0} and {x | NF®#(x) = 0}
are separable by a P?®7_set for any B € I'; N V. This assertion easily follows from
the following two lemmas.

Definition 1. A good machine is a deterministic oracle Turing machine working within
polynomial-space and which on input x makes at most poly(|x|) queries.

Lemma 1.2. If I is an interval and (Ny,Ny) is a pair of NP-machines being correct
on C® H for any C € I' NV, then there exists a good machine P such that for any
x and any B € VN T, PB(x) is equal to a j € {0,1} for which NJB@H(x) =1

Lemma 1.3. Let P be a good machine. Then there exists a P-machine M such that
PB(x) = M2®H (x) for all x € B*, B € Q (recall that H is a PSPACE-complete set).

Proof of Lemma 1.2. We describe the work of P on input x with oracle B in the case
B e I'n V. The reader can easily modify the program of P to handle the general case.
Machine P with oracle B on input x works as follows. Find first » = n; € S such that
log, n<|x| < 2". Let m be so large that N; on inputs of length greater than m cannot
query oracle values on words of length n;,, or greater (j = 0,1). If |x] < m then
compute NZ®H(x) directly and return 0 if Nf®#(x) =1 and 1 else.

Otherwise, make the following. Query the value of B on all the words of length at
most »;,_;. The number of such queries is less than 2%-'*!1 < 2|x|. We know B’s value
on all the words that both values NZ®¥(x) and N2®(x) depend on except for words
of length n. Let

B(y), if |y| #n;
0, otherwise.

Cy)y= {

Note that C € ¥ NI, therefore NS®¥(x) = 1 or NF®¥(x) = 1. Find an / € {0,1} such
that N ,CGBH (x) =1 and find an accepting computation ¢ of N; with oracle C ® H on x.
This can be done within polynomial-space by checking all the computations of Ny and
N; with oracle C® H on input x. All the queries made to H in those computations can
be answered within polynomial-space because their lengths are bounded by poly(|x|)
and H € PSPACE. Set W = Queryf,,(c, CaH)NB". Query ‘B(y) =? forall y € W.
If B(y) =0 for all y € W, then N,BEBH(x) = 1; in this case return /. Otherwise we
have found the unique word of length » on which B is equal to 1, and therefore can

A.A. Muchnik, N.K. Vereshchagin/! Theoretical Computer Science 157 (1996) 227-258 233

begin
w:= A (the empty word);
while result(x,w) =%
commentary: result(x,w) is computed in time
poly(|x|, |w|) by querying H;
do v := question(x,w);
commentary: question(x,w) is computed in
time poly(|x|,|w|) by querying H;

b:=B(y);
w = wh;
od
return result(x,w)

end

Fig. 1.

find both N(f ®H(x)and N IB ®H (x) within polynomial-space without making extra queries
to B.
Obviously, we have made poly(|x|) queries. O

Proof of Lemma 1.3. Let P be a good machine. Define the functions question(x,w)
and result(x,w) as follows. Let w be a binary word of length ». For any i<n denote
by w(i) the ith symbol of w. Run the machine P on input x and give the answer w(1)
to the first query, the answer w(2) to the second query and so on. There are three
possibilities:

(1) P makes exactly # queries and then returns a result say #; in this case set

question(x,w) = $, result(x,w) = r;

(2) P makes n queries and then makes (n + 1)st query, say ‘B(y) =?°; in this case
set

question(x,w) = y, result(x,w) =$;
(3) P makes less than »n queries; in this case set
question(x,w) = result(x,w) = S.

Obviously, both functions question and result are computable within polynomial-
space. Therefore, they can be computed by a polynomial-time machine with oracle H.
Let machine M work according the program shown on Fig. 1. [

The proof of Theorem 1 is finished. O

All other theorems in this paper are proved according to the presented scheme.
Namely, first a set V' of oracles is defined (which is called the universum).

234 A.A. Muchnik, N.K. Vereshchagin/ Theoretical Computer Science 157 (1996) 227-258

N

P4 = BPP* NP“-sets are separable Co-NP“-sets are separable
P* = R* = NP/ 1 Co-NP*
P = R* N Co-R*

Fig. 2. The edges of the drawn directed graph represent relativizable implications (i.e., implications that are
true under any oracle). For example, the implication P4 = NP4 = P4 = BPP4 is true by the well-known
result of Sipser BPP4 C Zf (P. Gécs improved that result to BPP4 C Zg [15], see also [10] for the simplified
proof).

The oracle under which the desired Boolean combination of complexity assertions
holds always has the form B @& H, where H is a PSPACE-complete set.

The desired properties of B are represented as a countable family of requirements on
B and then the diagonal construction is used to satisfy all the requirements. On the ith
step, an interval I'; is constructed such that the ith requirement holds for any B € I''NV.
The requirements are of two types: “negative” ones and “positive” ones (in the above
example the requirements satisfied on odd steps are negative ones and the requirements
satisfied on even steps are positive ones). Negative requirements are satisfied by using
an appropriate analog of Lemma 1.1. Its proof is always easy, therefore we will only
present the analog of languages L& and L. The positive requirements will be satisfied
by trying first to make the current pair of machines (or single machine in the case of
classes BPP and R) incorrect. The notion of correctness of course will be specific in
each case. If this fails, then we use an analog of Lemma 1.2, which combined with
Lemma 1.3 (common for all the applications of the method) will complete the proof.

Thus, the proof of any specific theorem in the sequel will consist of the definition
of the universum, the definition of analog of languages L and L? and the proof(s) of
the appropriate analog(s) of Lemma 1.2.

4. The applications of the universum method

The assertions on complexity classes to which the method is applied are shown on
the Fig. 2. We apply the universum method to prove the existence of oracles under
which one or another combination of assertions that label the nodes of the graph holds.
There are 17 possible combinations of those assertions. They are listed in the Table 1.

A.A. Muchnik, N.K. Vereshchagin| Theoretical Computer Science 157 (1996) 227-258 235

Table 1
P=NP NP-sets Co-NP-sets P=NP N P=BPP P=R P=RnN Comment
separable separable separable Co-NP Co-R

] ® + + + + + + [

2] ® @ + &5 + + Theorem 13
3 - & S} + = & + Unknown

4 - & &) + - 3 + Unknown

5 — S5 S] + B + + Theorem 4

6 — &3] S + = & + Theorem 7

7 - P e + — S + Theorem 8

8 - o & + 5 + + Theorem 2

9 - s & + 3 s + Unknown
10 —] D + - = + Unknown

L1 — D 8] @ & + + Theorem 6
12 - S S] @ & & + Theorem 9
13 - S S} & + & + Theorem 10
14 - — - & & + + Theorem 3
15 - — - [S] = & + Theorem 11
16 — — — & —] &5 Theorem 12
17 — — — — — — & Well known

Note: The signs “+” and “@” put in a line of the table indicate that the corresponding assertion is true.
The signs “—" and “&” indicate that the corresponding assertion is false. The difference between the signs
“+" and “@” is that the truth of assertions labeled by “+” follows from the truth of assertions labeled by
“4” but the truth of any assertion labeled by “@” does not follow from the truth of other assertions. The
same difference is between the signs “—" and “¢3”. The commentary ending each line includes information
about where the combination present in the line is proved.

We are able to prove the existence of oracles under which the combinations of all
the lines but the lines number 3, 4, 9 and 10 are true. In fact, we do not know the
answer to the following question.

Question. Is there an oracle under which Co-NP-sets are separable and P # BPP?
We shall use only the universums of the form
V=VZ)={BcQ|VndSVYyecB" B(y)=0, VneS B|B" ¢ Z},

where Z is a subfamily of the family F of all the functions having the type B" — B
for some n € S. In the sequel we denote by F, the set B®. The set Z is called the
base of V(Z).

The following five standard bases are important for the present investigation:
o Z(<1) = {x € F|#,2< 1}, this base was already used in the proof of Theorem 1,
o Z(=1)={acFl#a=1},
e Z(=z)={aeFl#Hax=1},
o Z(BPP) = | J,.s{x € F, | #2/2" & [%; %]},
o Z(R) = U,cqlx € F | #12/2" &€ (0; 1]}

Other bases will be built from these standard bases by the following operation + on
bases: Z' + Z" ={a € F, |iis even and x € Z’}U {x € F,,, |7 i8 odd and o € Z"}.

236 A.A. Muchnik, N.K. Vereshchagin| Theoretical Computer Science 157 (1996) 227-258

Now, we formulate the five analogs of Lemma 1.1, which will be used to satisfy neg-

ative requirements in the proofs of the next theorems. Their proofs are straightforward
and therefore we omit them.

Lemma 1. Let Z' be any base and let an interval I' intersect with the universum
V = V(Z(<1)+Z'). Then there exists no P-machine M such that MB®" separates
the language

{1"|n €S, n is even and there exists y € B"™" such that B(0y) = 1}
from the language
{1"|n €S, n is even and there exists y € B"™! such that B(1y) = 1}

Jor any B € I' N V. These languages are in NP2 qnd are disjoint for any B € V.

Lemma 2. Let Z' be any base and let an interval T intersect with the universum
V = V(Z(=1)+2Z'). Then there exists no P-machine M such that MP®" separates
the language

{1"|n €S, n is even and for all y € B"~' B(0y) = 0}
from the language
{1"|n €8, n is even and for all y € B! B(1y) =0}

for any B € I'NV. These languages are in Co-NP*®* and are disjoint for any B V.

Lemma 3. Let Z' be any base and let an interval T intersect with the universum
V = V(Z(=1)+Z'). Then there exists no P-machine M such that MB®¥ recognizes
the language

{1"| n € S,n is even and there exists y € B~ such that B(0y) = 1}
for any B € T NV. This language is in NP2 0 Co-NP*® for any Be V.

Lemma 4. Let Z' be any base and let an interval T intersect with the universum
V = V(Z(BPP)+Z'). Then there exists no P-machine M such that MB®H recognizes
the language

{1"|n €8, n is even and #,(B|B") > (2/3)2"}

for any B € I' 0N V. This language is in BPP2 for any Be V.

Lemma 5. Let Z' be any base and let an interval T intersect with the universum
V = V(Z(R)+2Z'). Then there exists no P-machine M such that MB® recognizes
the language

{1"|n €8S, n is even and #,(B|B") > (1/2)2"}

for any B € I' N V. This language is in R®®? for any Be V.

A.A. Muchnik, N.K. Vereshchagin| Theoretical Computer Science 157 (1996) 227-258 237

Now, we are going to consider all the lines in the table except lines numbered 3, 4,
9 and 10.

The existence of oracles under which the combinations in the first and in the last
lines hold is well known so we skip those lines.

Theorem 2. NP-sets are inseparable, Co-NP-sets are separable and P = BPP under
some oracle (8th line in the table).

Proof. This theorem strengthens Theorem 1 and its proof uses the same universum
V = V(Z(<1)). All we have to do is to prove the analog of Lemma 1.2 for BPP-
machines. We say that a BPP-machine M is correct on an oracle 4 if M# accepts any

input with probability lying outside the segment [1;3].

Lemma 2.1. Assume that I is an interval and M is a BPP-machine being correct on

CaH for any C € TNV, Then there exists a good machine P that recognizes with
oracle B the same language as M does with oracle B4 H for any B€ VN T.

Proof. Let M and I satisfy the conditions of the lemma. Let us construct P. Let x be an
input to P. In fact, the beginning of the proof of all analogs of Lemma 1.2 is common.
We first find an n = n; € S such that log, n<|x| < 2", query B’s values on words of
length at most 7;_;, then compute the value Prob[AM %=/ (x)] directly if |x| is so small
that M8 (x) may depend on B|B®" '. It remains to construct a good machine P’
that on input (x, B|B="~'), where B € V' NI, decides if Prob[ME®(x)] > %— provided
x is so long that MB8%# on input x cannot query B’s value on words of length n;,, or
greater.

Let P’ work as follows. Find first the probability p of the event “M ¥ (x) = 17,
where C is the oracle being equal to B on words of length different from #» and to zero
on remaining words. Note that we know all the values of C needed to find p. Without
loss of generality we may assume that pz% (the case ps% is entirely similar).*

We will use the notion of weight introduced in [14]. For an oracle D let wp(y)
(the weight of y relative to D) denote the probability of the event “MP®/ at some
moment in the computation on input x queries ‘D(y) =?"". It is easy to see that

> wo(y)<poly(|x|)
vEB*
for any D.

Denote by W the set of all y € B" such that we(y)= ¢. Obviously, [W|<poly(|x]).

Find W and query ‘B(y) =?" for all y € . Consider two cases.

First case: Vy € W B(y) = 0. Let us prove that then Prob[M*®"(x) = 1] > .
Since M is correct on B & H the probability g of the event “MZ®H(x) = 17 is either

greater than % or less than % We claim that the first alternative holds. Indeed, if

5Since M is correct on C @ H, we know that in this case p > % However we shall not use this fact
because we want the proof to be valid for the case V' = V' (Z(=1)), in this case p can lic inside the segment

238 A.A. Muchnik, N.K. Vereshchagin/ Theoretical Computer Science 157 (1996) 227-258

B[B" = C|B", then ¢ = p>13, therefore ¢ > 2. Otherwise denote by y the unique
word of length n such that B(y) = 1. Then we(y) < L because y & W. Let us make

6
use of the following

Lemma 2.2. For any oracles D and E,

| Prob[MP(x) = 1] — Prob[M%(x) = 1]| < S wp(2).
zEB*:D(2)#E(z)

Proof. Obvious. [

By the above lemma, |Prob[M#®/(x) = 1] — Prob[M®#(x) = 1]|<wc(y) < 4,
therefore, Prob[M5®# (x) = 1] > § — I = 5. Thus Prob[M#®#(x) = 1] > . Return 1
in the first case.

Second case: dy € W B(y) = 1. In this case we know all the values of B needed
to compute Prob[M2®(x) =1]. O

Theorem 3. There exists an oracle A such that NP NCo-NP* # P* and BPP* = P*
(14th line in the table).

Proof. Take the base Z = Z(=1). The analog of Lemma 1.2 for BPP-machines is
already proved (see the proof of Lemma 2.1 and Footnote 5). O

Theorem 4. There exists an oracle A such that NP*-sets are separable, Co-NP*-sets
are inseparable and BPP*' = P* (5th line in the table).

Proof, Let V = V(Z(>=1)).

Call a pair (Ny,N;) of NP-machines correct on 4 if Ng'(x) = 0 or Ni(x) = 0 for
all x.

To ensure separability of NP-“sets we shall prove the following analog of Lemma1.2.

Lemma 4.1. Let (Ny,N) be a pair of NP-machines being correct on B & H for any
B € VN TI. Then there exists a good machine P that for all B € VNI on input x
with oracle B finds an 1 € {0,1} for which N/®"(x) = 0.

Proof. Let x be the input word. Let n = n; be defined as in the proof of Lemma 1.2.
Assume that the length of x is so large that both machines Ny, N, on input x cannot
query oracle values on words of length =n;., and that » is greater than lengths of
words defining I'. Assume that we already know B[B<". We have to find an / such
that N2 (x) = 0.

To this end we shall use the technique from [2]. We need the notion of a certificate.
Let [= 0,1. An [-certificate is a function having the form C| Queryf,/(c, CaoH), where
C is an oracle agreeing with B on all words of length different from », NICQ’H x)=1
and ¢ is an accepting computation of N,C@H on x.

Note that if y is an [-certificate and C continues 7y, then N,C@H (x) = 1. Obvi-
ously, the cardinality of domain of any [-certificate is bounded by a polynomial of

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 239

x|, say p(|x|). Assume that x is so long that 2" > 2p(|x|). We claim that then any
O-certificate ¢ is inconsistent with any 1-certificate i (that is, @(y) # Y(y) for some
v € Dom(¢) N Dom(y)).

Indeed, assume that a O-certificate ¢ and a 1-certificate iy are consistent. Then there
exists an oracle C agreeing with B on words of length different from » that continues
both ¢ and . As | Dom(¢)|+|Dom(y)| < 2" we may assume that there exists y € B"
such that C(v) = 1, that is, C is in ¥.® Since C continues both ¢ and ¥ we have
NEF (x) = NF#H(x) = 1. Thus the pair No,N; is incorrect on C & H and C is in
VN TI'. The contradiction proves the claim. [

Let %o [%1] be the set of all O-certificates [1-certificates]. Let U =). Repeat p({x|)
times the following loop. Pick a O-certificate ¢ in %, (if 6 is empty then return 0 and
halt). Query ‘B(y) =7’ for all y € Dom(¢) and remove from %, and €, all certificates
being inconsistent with B| Dom(¢). Include in U all the elements of Dom(g). (We
will explain further how to perform the described program within polynomial-space.)

Before and after each iteration of the loop all the certificates in %y U 6, agree
with each other on U. On the other hand, in each iteration, any certificate y in @
is inconsistent with the picked O-certificate ¢, therefore its domain intersects with
Dom()\U. Hence the number of elements of the set Dom(y)\ U decreases after each
iteration of the loop for any 1-certificate y in 4.

Thus, after p(|x|) iterations, U includes the domains of all the certificates in 4.
If ¢, becomes empty, then N,BeH (x) = 0. Otherwise %, becomes empty, therefore
NEH (x) = 0.

Obviously, we have made at most p(|x|)? queries to B.

Let us prove now that the described program can be run within polynomial-space.
We do not need to store €y or ¥;. It suffices to store the set U/ and the B’s value on
elements of U.

Having U and B|U we can decide if there is a O-certificate [1-certificate] consistent
with B|U by checking all the computations of Ny [N;] on input x. If a query ‘B(v) =7
is made during one of computations we answer ‘B(v)” if |y|<n;_, or y is in U (note
that we know B’s value on such words), 0 if n;_; < |y < n or n < |y| and try all
the answers otherwise. As the number of queries does not exceed poly(|x|) the amount
of stored information is poly(|x]). O

To ensure the equality BPP“ =P we shall prove the following analog of Lemma 1.2,

Lemma 4.2. Let M be a BPP-machine being correct on B& H for any Be VT,
Then there exists a good machine P such that for any B € VN T, P? recognizes the
same language as MP®H does.

%In the next theorem we shall need this lemma for ¥ = V(Z(BPP)). In this case we need the inequality
| Dom{¢)| + | Dom(¥)| < (%)2". Having this inequality we can find an oracle C being consistent with both
¢ and y, agreeing with B on words of length different from » and such that the number of words of length
n in C is greater than (%)2”, that is, we can find C € V' N T continuing both ¢ and y.

240 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996} 227-258

Proof. We use some ideas from [12] and [8].
By Lemma 4.1 it suffices to construct a pair (Ny, N;) of NP-machines such that

Prob[M5®1 (x) = 1] >
Prob[M 2% (x) = 1] <

= NPy =1, N x)=0

2
3
s N =0, NJ¥(x) =1

for any x and any B € V' N I'. We construct machine »; (and machine Ny can be
constructed in the similar way).

Let x be an input and let B be in V" N I". Let n be defined as usually and let x be
so long that M on input x cannot query B’s value on words of length n;, or greater
and that » is greater than lengths of words defining I

Denote by & the maximal number of queries that M can make on input x. It is
important that k <poly(|x|). Let in the sequel Q(B) denote the set of all the oracles in
V agreeing with B on all the words of length different from n. Note that QCV N rI
so M is correct on C & H for any C € Q(B).

For y € B" and D € Q(B) denote by wp(y) the probability of the event “MPE¥ on
input x queries ‘D(y) =7"".

Let

W = {y e B"|ws(y)=1/(% +3)}.

Let us note that since > vepe WB(Y) <k the set ¥ has at most (9% + 3)k elements.

Claim. If Prob[M5%(x) = 1] > 3 then Prob[M“®# (x) = 1] > % for any oracle C €
QO(B) agreeing with B on W.

Proof. Assume the contrary: there exists C € Q(B) agreeing with B on W such that
Prob[M®H(x) = 1] < % Choose C satisfying these conditions and differing from B
on the least number of arguments. Let U = {y € B" | B(y) # C(»)}.

1

Let us prove that we(y) > 5 for any y in U possibly but one. Let y be an element
of U. Denote by C, the oracle obtained from C by changing the value on y. Then
C, differs from B on less arguments than C does. Since C,|W = B|W, we have
Prob[M ®4(x) =1] > % provided C, is in Q(B). Let us distinguish two cases.

First case: C, is in Q(B). Then Prob[M®#(x) = 1] > . Therefore, by Lemma
2.2, we(y)z ProbM @ (x) = 1] — Prob[M®(x) = 1] > — 1 = 1/3.

Second case: C, & Q(B). Since C, agrees with B on all the word of length different
from » this means that #,(Cy|B") = 0. This may happen only if #,(C|B") = 1 and
therefore this case can occur for the single y.

As D7 cp we(y)<k, we have [U|<3k + 1. Since UN W = 0, we have wp(y) <
1/(9 + 3) for any y € U. Hence ZveU we(y) < (1/(% +3)(3k+ 1) = % On the
other hand, by Lemma 2.2

> wa()= Prob[MP®7 (x) = 1] - Prob[M“®(x) = 1] > 2 - 1 = L.
veU

The contradiction proves the claim. [J

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 241

In a similar way we can prove that if Prob[M®®71] < 1 then Prob[M“®¥(x) =
1] < % for any oracle C € Q(B) agreeing with B on W.

For a set U CB" let O(B|U) denote the set of all oracles C agreeing with B on
all the words of length different from » and on U and such that the number of words
in B"\ U on which C is equal to zero is at most (9k + 3)k. Assume that |x| is so
large that 2(9k + 3)k < 2". Then O(B|U) C Q(B) for any U having at most (9% + 3)k
elements.

Let us prove that Prob[M8®(x) = 1] > 2 if and only if

(*) there is U such that |U|<(9% + 3)k and Prob[M " (x) = 1] > % for any
C € O(B|U).

The implication from the left to the right follows from the above claim since we
can take W as U. Let us prove the implication from the right to the left.

Assume that Prob[M®®(x) = 1] < 1 but there is U such that [U|<(9% + 3)k
and Prob[M“®#(x) = 1] > 2 for any C € O(B|U). Take such U. Let D denote the
oracle in Q(B) agreeing with B on U U W and being equal to 1 on all the words in
B"\ (U U W). Then Prob[MP®#(x) = 1] < % since D agrees with B on W. On the
other hand D is in O(B|U) hence Prob[M”®#(x) = 1] > 2. The contradiction shows
that Prob[M8®/(x) = 1] > 2 if and only if () is true.

Let us be given a subset U of B" having at most (9% + 3)k elements. The values
of any oracle C € O(B|U) on words of length less than n;; can be identified by
means of polynomial amount of information and the value Prob[M“®(x) = 1] can be
computed within polynomial-space. Thus given U we can decide within polynomial-
space if () is true. Therefore given U we can decide in polynomial-time using the
oracle H if (x) is true.

Machine NIB@H on input x works as follows. Query the value of B on all the words
of length at most #;_;. Then guess a set U C B" having (9% + 3)k elements and accept
if (%) is true. O

Theorem 5. There exists an oracle A such that NP*-sets are separable, BPP4 £ P*
and R* = P,

Proof. Let V = V(Z(BPP)). To ensure separability of NP“-sets we need the following
analog of Lemma 1.2.

Call a pair (Np,N;) of NP-machines correct on A if Ng'(x) =0 or N/(x) = 0 for
all x.

Lemma 5.1. Let (Ny,Ni) be a pair of NP-machines being correct on B H for any
B e VNI. Then there exists a good machine P that for any B € VN T on input x
with oracle B finds an 1 € {0,1} for which N,B@H(x) =90

Proof. This lemma can be proven just as Lemma 4.1. The only difference is that we
have to take x so large that (%)2" > 2p(|x}) (and not 2" > 2 p(jx|) as in that proof).
0

242 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258

Let us say that a probabilistic oracle Turing M machine is correct on A4 if for any
x, Prob[M“(x) = 1] either is equal to 0 or is greater than ;.

We need the following analog of Lemma 1.2.

Lemma 5.2. Let M be a probabilistic polynomial-time oracle machine being correct
on oracle B® H for any B € VN I. Then there exists a good machine P that with
any oracle B € V N T recognizes the same language as M does with oracle B & H.

Proof. By Lemma 5.1 it suffices to construct a pair (Ny, N;) of NP-machines such that

Prob[ME® (x) = 1] > 1 = N¥H(x)=1, Nf®(x)=0
Prob[M®®H (x) = 11=0 = NE¥(x)=0, NF®*(x) =1

for any x and any BeI'n'V.

It is obvious that there exists an NP-machine N, satisfying this requirement.

Thus, we have to construct an NP-machine N, satisfying this requirement. Let x be
an input to Ny and let B be in ¥ NT. Let n = n; be defined in usual way. Assume that
M on input x cannot query oracle values on words of length >#n;,,. Let & = poly(|x|)
be the maximal number of queries to B which machine M can make during the work
on input x. Let Q(B) denote the set of all the oracles in ¥ agreeing with B on all the
words of length different from n.

Denote by we(y) the probability of the event “M®# (x) on input x queries ‘C(y) =
27, Let W = {y € B"|wp(y) > - }. Note that [W| < 4k°.

Claim. Prob[M“®#(x) = 1] = 0 for any C € Q(B) agreeing with B on W.

Proof. Assume the contrary. Let C be a counterexample. Then for at least one random
string, M“®#(x) = 1. Denote by U the set of all the y € B” such that the query
‘C(y) =7 is made during the computation of M*® on x for that random string.
Obviously, |U|<k. Let D be the oracle agreeing with C on U and with B on remaining
words. If n is large enough, then D is in I'. If D belonged to V' we would obtain a
contradiction: we know that probability of the event “MP®# (x) = 1” is positive, hence,
this probability would be greater than % Therefore, by Lemma 2.2, ZD(y) 28(y) WB(Y)

would be greater than 1. On the other hand, {y|D(y) # B(y)} C U\ W, consequently,

1 k 1
we(WD<|U|—< 7 = 5.
D(ygB(y) 4k 4k 4

Now we have to explain what to do if D & V, that is,
#(D[B") € [(1/3)2",(2/3)2"].

We know that B € V, ie., #(B|B") & [(1/3)2",(2/3)2"]. Without loss of generality
we may assume that #,(B|B") > (2/3)2". Then #,(D|B") > (2/3)2" — |U|. We have
|U| <k = poly(|x|). Therefore, we may assume that 2|U| + |W|<(1/3)2".

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 243

As (1/3)2" <#,(DIB"), there exists a set 7 C B” having exactly |U| elements, not
intersecting with UUW and such that D(y) = 0 for any y € T. Take such T and change
the value of D on all the words in 7. Now we have #(D|B") > (2/3)2", therefore
D is in V. As D(y) = C(y) for any y € U, we have Prob[MP%(x) = 1] > 0.
Therefore, Prob[MP®H (x) = 1] > 1.

Recall that Prob[M5%®”(x) = 1] = 0. Hence, by Lemma 2.2,

1
Z wa(y) > 3
D(y)#B(y)
On the other hand,
1 2k 1
we(MN<UIHITH e <50 = 5
D(.VgB(y) 4k 4k 2

The contradiction proves the claim. [

The rest is as in the proof of Lemma 4.2.

For a set U CB" let O(B|U) denote the set of all oracles C agreeing with B on
all the words in U and on all the words of length different from n and such that the
number of words in B"\ U on which C is equal to zero is at most k. Assume that |x|
is so large that 4k*> +k < 2"~!'. Then O(B|U)C Q(B) for any U having at most 4k?
elements.

Let us prove that Prob[M2%# (x) = 1] = 0 if and only if

(*) there is U such that |U|< 4k* and Prob[M ®"(x) = 1] = 0 for any
C ¢ O(B|U).

The implication from the left to the right follows from the claim. Let us prove the
implication from the right to the left.

Assume that Prob[M5®(x) = 1] > 1 but there is U such that |U|<4k* and
Prob[M % (x) = 1] = 0 for any C € O(B|U). Take such U. Let us fix any random
string for which M2®H(x) = 1 and denote by R the set of y € B” such that the query
‘B(y) =7 was made during the computation of M2®# on input x for that string. Let
D denote the oracle in Q(B) agreeing with B on U U R and being equal to 1 on all
the words in B"\(U UR). Then Prob[MP¥#(x) = 1] > 0 since D agrees with B on R.
On the other hand D is in O(B|U) hence Prob[MP®# (x) = 1] = 0. The contradiction
shows that Prob[MZ® (x) = 1] = 0 if and only if () is true.

So machine N(f@ﬂ on input x works as follows. Query the value of B on all the
words of length at most n,_ ;. Then guess a set U C B” having 4k? elements and accept
if () is true. O

Thus the theorem is proved. O

The above proven facts on the five standard universums are shown in Table 2. The
sixth line in the table contains unproven facts about the universum V(F) (recall that F
denotes the set of all functions from Unes B® into B). This information is presented
for the sake of completeness.

244 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996} 227-258

Table 2

NP-sep. Co-NP-sep. NP N Co-NP BPP R
V(Z(<1)) - + + + +
V(Z(=1)) - - - + +
V(Z(=1)) + - + + +
V(Z(BPP)) + - (0) + - +
V(Z(R)) + - {0) + - -
V(F) + (o) - (0) + (0} + (0} + (0)
Note: The sign + in a line of the table indicates that the analog of
Lemma 1.2 is true for the corresponding universum. The sign — in a

line of the table indicates that the analog of Lemma 1.1 is true for the
corresponding universum. The letter o means that the proof was omitted
(because we do not need the corresponding assertion).

In the proofs of the next theorems we use bases obtained by addition from the five
standard bases.

Theorem 6. There exists an oracle A such that NP -sets and Co-NP'-sets are in-
separable, NP? N Co-NP? = P* and BPP” = P (11th line in the table).

Proof. Let V' = V(Z(<1)+Z(>1)). Let us prove first the analog of Lemma 1.2 for
NP N Co-NP-machines.

Lemma 6.1. Let (Ny,N|) be a pair of NP-machines such that the languages accepted
by NE® and NP®" are complementary for any B € V NI. Then there exists a good
machine P that with any oracle B € V N T accepts the same language as Ny does
with oracle B® H.

Proof. Let I, Ny and N satisfy the conditions of the lemma.
Machine P works as follows. Let x be the input. Let n = n; € S be defined by
inequalities log, n<|x| < 2". If i is even then by definition

xeZ & #Ha<l

for any o € F,. In this case we consider (Np,N;) as a pair defining a problem of
separation of Co-NP-sets and reason as in the proof of Lemma 1.2.
If i is odd, then by definition

R AR

for any « € F,. In this case we consider (N, N;) as a pair defining a problem of
separation of NP-sets and reason as in the proof of Lemma 4.1. O

The analog of Lemma 1.2 for BPP-machines can be proved similarly. [J

To prove Theorems 7-12 we do not need any new ideas. Therefore we shall only
present the bases used in their proofs.

Theorem 7. There exists an oracle A such that NP -sets are separable, Co-NP*-sets
are inseparable, BPP* £ P* R* = P* (6th line in the table).

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 245

Proof. Take the base Z = Z(BPP) + Z(>1). C

Theorem 8. There exists an oracle A such that NP*-sets are separable, Co-NP'-sers
are inseparable and P! £ R (Tth line in the table).

Proof. Take the base Z = Z(R) + Z(=1). O

Theorem 9. There exists an oracle A such that NP*-sets are inseparable, Co-NP*-
sets are inseparable, BPP? #£ P4 NP' 1 Co-NP* = P and R* = P* (12th line in
the table).

Proof. Take the base Z = Z(< 1)+ Z(=1)+ Z(BPP). [

Theorem 10. There exists an oracle A such that NP*-sets are inseparable, Co-NP"-
sets are inseparable, R* # P* and NP 1 Co-NP* = P! (13th line in the table).

Proof. Take the base Z = Z(<1)+ Z(=1)+ Z(R). O

Theorem 11. There exists an oracle A such that NP* N Co-NP* £ P4, BPP' +£ P/
and R* = P! (15th line in the table).

Proof. Take the base Z = Z(=1)+ Z(BPP). [

Theorem 12. There exists an oracle A such that NP 1 Co-NP* # P R* £ P* und
R* N Co-R* = P* (16th line in the table).

Proof. Take the base Z =Z(=1)+ Z(R). O

The next theorem completes theorems shown in the Table 1. To prove it we need
many universums.

Theorem 13. There exists an oracle A such thar P4 £ NP* NP*-sets are separable,
Co-NP*-sets are separable and BPP' = P* (second line in the table).

Proof. We use a diagonal construction as in the proof of Theorem 1 but instead of a
chain of intervals we construct a chain

I'onvy>IhnVyo---,

where I';’s are intervals and V;’s are subsets of €. All universums V;’s are taken from
the family {V(Z7)|j =1}, where Z/ =), cs{x € F,|#12<n/j}. Since all the sets in
this family are closed in Cantor’s topology, the intersection (5, I'; N ¥; is nonempty.

The oracle 4 as usually will have the form B< H, where H is a PSPACE-complete
set. The set in NP* \ P* will be Lf = {1"|n €S, Ju € B" B(u) = 1}.

We do not present the whole diagonal construction but instead present only specific
points. The steps on which we satisfy the requirement L2 ¢ P2 are made as usual:
on those steps we do not need to change current universum.

246 A.A. Muchnik, N.K. Vereshchagin| Theoretical Computer Science 157 (1996) 227-258

Current universum is changed on steps on which we satisfy the requirement of
separability of NP-sets. We have now to use the following analog of Lemma 1.2.

Lemma 13.1. Assume that Ny, Ny are NP-machines such that the languages accepted
by Nég@H and Nf®” are disjoint for any B € I' N\ V(Z/). Then there exists a good
machine separating those languages for any B € I N V(Z¥).

Proof. Let the conditions of the lemma be true. The good machine separating those
languages works on input x as follows. Let n = n; be defined as usually. An [-certificate
(! =0,1) is a function of the form C| Queryﬁl(c,C @ H)NB"), where C is an oracle
in I' N V(Z¥) agreeing with B on words of length different from #, N,CEBH (x)=1 and
¢ is an accepting computation of Nf®H on input x.

Let us prove that any O-certificate is inconsistent with any l-certificate. Assume the
contrary: some O-certificate ¢ is consistent with some 1-certificate . Let

o(»), if y € Dom(g);
Y(y), if y € Dom(y);
B(y), if |y| #n;
0, otherwise.

As #o<n/2j and #yy <n/2j, we have

C(y)=

n n

n
#(CIBY< — + -,
(] 2j 2%

hence C € I'NV(Z/). On the other hand N} ®#(x) = N ®#(x) = 1. The contradiction
shows that any O-certificate is inconsistent with any 1-certificate.
Further we can reason just as in the proof of Lemma 4.1. O

Lemma 13.2, Assume that Ny, N, are NP-machines such that the languages accepted
by NE®¥ and NE®" span B* for all B € I' N V(Z/). Then there exists a good
machine that on input x with any oracle B € T NV(Z') finds an I € {0,1} such that
NE®H(xy = 1.

Proof. The good machine that finds / works on input x as follows. Start with the oracle
C that is equal to B on words of length different from » and to zero on remaining
words. Find an / such that NIC‘BH (x) = 1 (such [does exist since C is in ¥(Z/)NT).
Then we either discover that &, ,B Hxy=N, ZC@H (x) or find a u € B" such that B(u) = 1.
In the latter case include u in C and repeat the process.

After at most k = [n/j]+ 1 iterations we will halt since #,(B|B") < k. 0O

We need also the analog of Lemma 1.2 for BPP-machines:
Lemma 13.3. Let M be a BPP-machine being correct on BOH for any B € V(Z/)NT.

Then there exists a good machine P such that P? recognizes the same language as
MB®H does for any B € V(Z))NT.

A.A. Muchnik, N.K. Vereshchagin| Theoretical Computer Science 157 (1996) 227-258 247

Proof. Let the conditions of the lemma be true. We have to construct a good machine
that with any oracle B € V(Z/)NT recognizes the same language as M5 does. Let
that machine work as follows. Let x be the input. Let » be defined as in Lemma 1.2.
Let the oracle C be equal to B on words of length different from » and to zero on
remaining words. Let U = {u € B" |w¢(u) > £}, where k stands for the polynomial
upper bound for the number of queries made by M on input x and we(u) denotes the
probability of event “M“®H on input x queries ‘C(u) =?"". Query ‘B(u) =?" for all
u € U. If there exists no u € U such that B(u) = 1 then by Lemma 2.2

: I
| Prob[M5®7 (x) = 1] = Prob[M““ () = 1]|< 3 we()<k - — = 1/3.
ViCODED(Y) 3k

Therefore, in this case MB® accepts x iff MC®Y accepts x.
Otherwise include in C all those v € U which are in B and repeat the process.
After at most / = [n/j] + 1 iterations we will halt since #;(B|B") < /. O

Let us present one more application of the universum method consisting in the new
proof of a known theorem.

Theorem 14 (Hartmanis and Immerman [6]). There exists an oracle A such thar P* -
NP N Co-NP* £ NP* and the class NP* N Co-NP* has an m-complete language.

Proof. It is sufficient to construct an oracle 4 such that NP* 1 Co-NP* # P
NP* ¢ Co-NP* and the class NP* N Co-NP* has an m-complete language. The oracle
A will have the form B & H, where H is a PSPACE-complete set. Thus, we have to
construct the oracle B.

Take the universum

V ={4 € Q|#(4|B") =1 for any even n and #,(4{B")< for any odd n}.
The language in NP*\Co-NP* will be

LB ={1"|n is odd and 3u € B" B(u) = 1}.
The language in NP N Co-NP*\P* will be

L = {1"|n is even and Ju € B" 'B(lu) = 1}.

Obviously, Lf ¢ NP? and Lg € NP/ N Co-NP! for any B € V (recall that 4 = B H).
Thus, we have to construct an oracle B € V' such that

1. L% ¢ Co-NP*;

2. L8 ¢ P

3. NP’ N Co-NP* has a complete language.

To this end let us enumerate all the polynomial-time deterministic and nondeter-
ministic oracle machines and all the pairs of nondeterministic polynomial-time oracle

248 A.A. Muchnik, N.K. Vereshchagin| Theoretical Computer Science 157 (1996} 227-258

machines. In usual way we construct a chain
I'yo>I'N>IHL>oI3D---

of intervals such that any [; intersects with ¥ and the following holds. If i = 3%,
then kth nondeterministic machine does not accept the language {0,1}*\L? for any
Berl,nV.If i =3k + 1 then kth deterministic machine does not recognize the set
L for any B € I'; NV. And if i = 3k + 2 then either the languages accepted by the
nondeterministic machines in kth pair are complementary for any B € I'; 1V or those
languages are not complementary for any B I; N V.

Take any oracle B in (.-, I':NV. The assertions 1 and 2 are true. It remains to prove
that NP? N Co-NP* has a complete language. Denote by N; the jth nondeterministic
polynomial-time Turing machine and by p;(|x|) a polynomial restricting its running
time.

For C € Q denote by C" the word of length 2"*! — | encoding C’s value on words
of length at most »n in lexicographic order.

Let us note that a pair (N;,N;) of NP-machines defines a language in NP*®¥ n
Co-NP2®# iff Ni(x,BOH)+Ni(x,B®H) =1 for any x. As a complete language we
take the following language:

LE = {{j,k,B",x, 0P BEDEPEDY | 5 e € N, Ni(x,B®&H) = 1
and N(x,C® H)+ Ny(x, C® H) =1 for any C € V N I'(B|B~")}.

Let us prove that L8 is in NP4 N Co-NP". To this end let us prove that L8 is in NP4
(the remaining part L2 ¢ Co-NP* can be proved entirely similar).

Let us construct first a nondeterministic polynomial-space oracle machine that accepts
L® and makes polynomial number of queries.

Let w be an input word. Decide first whether w has the form

(j kD" x, OP/(|XD+PA(IX|)>

for some D € V and some j,k,n. Then decide whether B” = D" and whether N;(x,C®
H)+ Ne(x,C® H) =1 for all C € V such that C" = D" (this can be done within
polynomial space since both values N;(x, C&H) and Ny (x, C&H) depend only on value
of C on words of length at most p;(|x|)+ pi(|x|), therefore all the needed information
about C can be written within polynomial space). If this is not the case, then reject.
Otherwise run N; on input x with oracle B ® H and accept if N;(x, B H) = 1.

As in the proof of Lemma 1.3 we can convert the constructed nondeterminis-
tic polynomial-space machine into a nondeterministic polynomial-time machine with
oracle H.

Thus, it remains to prove that L? is complete in NP Co-NP*. Let a language L be
in NP N Co-NP*, Let (N;, N) be a pair of nondeterministic polynomial-time oracle
machines such that L(x) = N;(x, B®H) = | —Ni(x,B® H) for any x. The construction
of the oracle ensures that there exists n such that N;(x, COH)+N,(x, COH) = 1 for any

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227 -258 249

C € VNI (B|B<"). Let us fix such an n. The mapping x — (j, k, B, x, 0P (KD +pixhy
reduces L to L8, O

Remark. In a similar way we could prove all the previous theorems in a stronger form:
we could add the assertion that all the involved classes have complete problems.

5. General theorems

In this section we formalize the method applied in the previous section. All the
theorems are presented here without proofs. The proofs may be found in [11].

5.1. Basic definitions

We deal with decision problems as well as with separation problems. It is convenient
to consider a decision problem as a particular case of a separation problem.

Definition 2. A separation problem is a function P from B™ into {0, I,*} (the meaning
of this definition is as follows: we have to separate the set {x|P(x) = 0} from the
set {x|P(x) = 1}). A language is a separation problem L such that L(x) # « for all
x € B".

For any probabilistic polynomial-time oracle machine M consider the mapping

—

, if Prob[MA(x)=1] >
M(x,4) =< 0, if Prob[M*(x)=1] <

#, otherwise.

2.
3’
L (1)

In the sequel we do not distinguish the machine M and the mapping (x,4) — M(x.4).
Call any mapping from B* x Q into {0,1,#} an oracle machine.

Likewise, consider for every pair N = (Ny, N} of polynomial-time nondeterministic
machines the mapping

I, if Nf(x)=1, Nj(x)=0;
0, if N{i(x)=0, Ni(x)=1;
, i Nf(x) = Ni'(x) = 0
#, if Ni'(x) = Ni(x) = 1.

N(x,4) = (2)

*

Definition 3. A description is a mapping from the set B* x @ into the set {0, 1.#, %}.
A description D is called correct on an oracle 4 if D(x,4) # # for all x € B".

For example, (1) and (2) are descriptions, and (1) is an oracle machine.

Definition 4. For a description D and for an oracle 4 denote by D? the mapping
x + D(x,4). Given a class & of descriptions and an oracle 4 denote by %“ the set
{DA|D € 2 and D is correct on A}.

250 A.A. Muchnik, N.K. Vereshchagin/ Theoretical Computer Science 157 (1996) 227-258

Obviously, if M is an oracle machine being correct on 4, then M4 is a language.

Denote by BPP the set of all descriptions having the form (1), where M is a
probabilistic polynomial-time oracle machine. (We use bold face letters for classes of
languages, e.g., BPP, and roman letters for classes of descriptions, thus, BPP #« BPP,
however BPPY = BPP for any 4).

Denote by NP-separation the class of all descriptions of the form (2), where N
and N are polynomial-time nondeterministic oracle machines. Likewise one can define
Co-NP-separation, as well as classes of machines P, NP, R, R N Co-R, NP N Co-NP,
PSPACE.

Say that a separation problem P; is easier than a separation problem P, (P; <P,
in symbols) if Pj(x) # * implies P>(x) = Pi(x). In other words, P;(x)<P,(x) for all
x € B*, where < denotes the partial ordering on the set {0, 1,*} defined by inequalities
x<0, *< 1. Given classes K| and K, of separation problems we write K; <K if for
any P € K| there exists P, € K; such that P, <P,. Obviously, if K; is a class of
languages, then K| <K, means the same as K; C K;. For example, BPP? <P* means
the same as BPP? C P* and (NP-separation)? <P? means that NP -sets are separable.

5.2. The most general scheme of the universum method

The universum method can be applied for proving theorems of the following form.
Let

f],"‘a‘%‘lh gl""agna %la'-'ﬂ%ma ./1/1,...,./1/'”,
be classes of descriptions. We want to prove that there exists an oracle A such that
y A :
AP R fori=1,...,n
/%’fé%j‘ for j=1,...,m.

Consider for simplicity of notation the case m =n = 1.
Let us call a universum any nonempty subset J of Q.

Definition 5. A superuniversum is any countable family 7~ of universums having a

largest universum up to inclusion and such that the following two assertions hold:

1. For any ¥ € ¥ and for any interval I' intersecting with ¥ there exists V' € 7~
such that V' Cc ¥V NT.

2. For any countable chain V; D V> D V3 D - - - of elements of ¥~ the intersection ﬂf: Vi
1S nonempty.

The reader can see that in all the applications presented in this paper, the elements of
¥” have the form V' N I", where I is an interval and V is closed in Cantor’s topology,
and therefore are closed too (recall that Cantor’s topology is the topology the base
of which is the set of intervals). This implies Condition 2 because Q2 is compact in
Cantor’s topology.

A.A. Muchnik, N.K. Vereshchayin| Theoretical Computer Science 157 (1996) 227-258 251

For example, if V' is closed in Cantor’s topology, then the family
' (V)={V nI|I is an interval intersecting with V'}

is a superuniversum. Such universums were used in the proofs of Theorems [-12
and 14. The single exception was Theorem 13.

The largest universum in ¥~ is denoted by 1(7").

Thus, we wish to prove that there exists an oracle 4 for which

g P,
//4 < . ‘ ‘A,

where ', &, .4, A are classes of descriptions. The method can be applied only
if A, %, 4, and A" are countable and consist of the so called polynomial-local
descriptions.

Definition 6. A description D is called polynomial-local if the following holds. There
exists a polynomial p(n) such that for all x € B* and all 4,B € Q if A B<7") =
BIB<”*D_then D(x,A4) = D(x, B).

The first general theorem holds for any countable classes of polynomial-local de-
scriptions. Obviously, all the classes considered in the previous section consist of
polynomial-local descriptions.

Let H be an oracle and & be a class of description.

Notation 1. Denote by Zy the class of descriptions {(x,4) — D(x,A D H)|D € &}
For example, BPPy is the class of descriptions of the form (1), where M is a
polynomial-time probabilistic oracle machine having an extra oracle /. And generally,
if " is a class of machines of certain type, then # "y is the class of machines of that
type having the extra oracle H.
Assume that for a superuniversum ¥ and for an oracle H the following two asser-
tions are true:
(a) There is a description K in # 'y that is correct on any oracle in 1(#) and
such that there are no L € ¥y and V € ¥ such that K(x,4)<L(x,4) for
any x and any 4 € V,
(b) for any V € ¥ and any M € .#y being correct on any oracle in V' there
exist N € A"y and V' € ¥ such that V' CV and M(x,A)<N(x,4) for any
xand any 4 € V"',
We claim that in this case there exists an oracle 4 such that % £ #1 and
AL A,

Theorem 15. Let A, L, .4, and N be countable classes of polynomial-local descrip-
tions, H be an oracle and ¥~ be a superuniversum such that (a) and (b) are true.
Then there exists an oracle A such that #* & £ and 4" <N

252 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258

5.2.1. A generalization of Theorem 15

A natural question is if the above theorem can be generalized to involve other
assertions on relativized classes, for example, “# has a complete problem”. The
answer is affirmative.

The general approach is as follows. Suppose we wish to prove that there exists
an oracle 4 such that an assertion @(A4) on complexity classes is true. Suppose that
the assertion ¢(Y) can be expressed by a closed formula in a first-order language
having atomic formulae of the form P(x,...,x,,Y), where each variable x; ranges
over a countable set (possibly, different for different variables). (When we say that
a formula is closed we do not consider Y as a variable.) For example, the assertion
AV & PY N MY <A can be expressed by the following closed formula:

3K € #(Vx € B K(x,Y) £ #A—3L € LVx € B*K(x,Y)<L(x,Y))
A-IM € M(Vx € B*M(x,Y) # # A —~IN € #Vx € B"M(x, Y)<N(x, ¥))

having atomic formulae “K(x,Y) = #°,K € A ,“M(x,Y) = #",M € MH,“K(x,Y)<
Lx, YV, Ke A, Le L, “Mx,YYSNx Y)Y .M € #,N e N.

Let ¥~ be a family of non-empty subsets of €2, satisfying the Condition 2 in the defi-
nition of superuniversum. Call a set W C Q pseudo open if for any V in ¥~ intersecting
with W there exists ¥’ in ¥ such that ¥’ C ¥ NW. (Note that we do not require ¥~ to
be a base of a topology.) Let us enrich our language by constants attached to all the
elements from the domains of all the variables. Assume that the following condition
is true:

(k%) for any atomic formula P(x,,...,x,,Y) for any values ay,...,a, of x1,...,x,
the set {4 € Q| P(ay,...,a,,4)} is pseudo open.

Note that Condition 1 in the definition of superuniversum implies that all the sets
{4 € Q|P(x,4) = #},{4 € Q|P(x,4) # #},{4 € Q|P(x,A)<Q(x,4)}, and {4 €
Q| P(x,4) £Q(x,4)} are pseudo open for any x € B* and any polynomial-local de-
scriptions P and Q.

Let us define the forcing relation V + ¢(Y), where ¢(Y) is a closed formula of
the enriched language. We use induction on the number of symbols in ¢(Y). Assume
that only connectivities A and — and only the quantifier 3 are used in formulae.

1. If @(Y) is atomic, then V = @(Y) if @(A) is true for all 4 € V.
2. VEa(YYAWY)HEVE@(Y)and V= y(Y).

3. Vi 3z e Zp(Y,z) if there exists & € Z such that V F ¢(Y,b).
4. VE=p(Y)if V' ¥ @(Y) for all V' CV.

Obviously, the forcing relation is monotone, i.c., if ¥ F @(Y) and ¥’ CV, then
V' o(Y).

Lemma 6. For any closed atomic formula o(Y),V b —@(Y) iff the formula —p(A)
is true for all A€ V.

Proof. This easily follows from (%x). O

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-254 253

We claim that if ¥~ satisfies Condition 1 in the definition of superuniversum, then
the assertion (a) means that [(¥") - #"" £ #7 and the assertion (b) means that |(¥)
MY <A, thus (a)A(b) means that [(¥7) F (Y £ LY A4 <.4°7). Indeed, by above
lemma, Condition 1 implies that for all polynomial-local descriptions P and Q, for all
x € B*, both sets {4 € Q|P(x,4) = #} and {4 € Q| ~P(x,4)<Q(x,4)} are pseudo
open and therefore V - Vx € B* P(x,Y) # # iff P is correct on any oracle in V' and
VivVx e B P(x,)< O, Y) iff P(x,A)<O(x,4) for any 4 € V' and any x. Therefore,
(V)YF 27 £ %7 means that there exists K € # being correct on any oracle in 1(¥)
such that there exist no ¥V and L € ¥ such that K(x,4)<L(x,4) for any 4 € V and
any x. Likewise the assertion [(V) F .#" <.4"" means that for all M € ./ and all
V.M is incorrect on some oracle in ¥ or there exist V' CV and N € .4 such that
M(x,A)<N(x,A) for any 4 € V' and any x.

The following theorem generalizes Theorem 15.

Theorem 16. Let n(Y) be an assertion such that Vo= y(Y) for some Vy in ¥, Then
there exists A such that y(A4) is true.

5.3. Non-uniformity

Thus, if we want to prove that there exists an oracle 4 such that 4™ ¢ %7 and
A< A4, then we have to find a superuniversum ¥~ and an oracle H such that (a)
and (b) are true. In this form the method is universal. Indeed, if there exists an oracle
A such that #4 £ %4 and .4*<.4™ then both (a) and (b) hold for ¥ = {{4}},
H =0 or for v = {{0}},H = A.

Now we describe the very universum method. It does not use any notion of com-
putability. It is not universal as we will see in Section 6.

Given a class 2 of descriptions define the nonuniform counterpart of the class & as
follows.

Definition 7. The nonuniform counterpart of a class & of descriptions is the class

nug = U De.
CeQ

For particular classes of descriptions we can give equivalent definitions using no
notion of computability. Let us do this for the classes considered in the previous
section. To do this we have to define the notion of a Boolean decision tree and the
notion of a branching program. More exactly, we define families of decision trees and
families of branching programs; for the sake of brevity we omit the word “family”.

A Boolean decision tree (or simply decision tree) is a pair

T = (question, result),

where question is a function from B* x B* into B* U {$}, result is a function from
B* x B* into {0,1,$}. The decision tree T computes the description (x,4) — T(x,4)

254 A.A. Muchnik, N.K. Vereshchagin/ Theoretical Computer Science 157 (1996) 227-258

od
return result(x, w);
end.

Fig. 3.

defined as follows: 7(x,4) is equal to the result returned by the program shown in
Fig. 3. (We assume that this program always halt.)

Call a decision tree polynomial if

(1) there exists a polynomial p such that |question(x,w)|< p(|x|,|w|) for any x,
w e B* and any 4 € Q and

(2) the program shown on Fig. 3 halts after executing poly(|x|) loops; it is important
that in this case the program makes only poly(|x|) queries to A.

It must be stressed that we do not require any computability of functions question
and result. Obviously, if both functions guestion and resuit are polynomial-time com-
putable, then the description T'(x,4) can be computed by a polynomial-time oracle
machine.

We claim that a description D is in n.u.P iff D can be computed by a polynomial
decision tree. This is quite easy: let D be in n.u.P, say D(x,4) = M(x,4 & C), where
M is a polynomial-time oracle machine and C is an oracle. Then let gquestion(x,w)
be the question to oracle 4 made by M after getting answers w(l), w(2), ..., w(|w|)
to previous questions made to A4 and let result(x,w) be the value returned by M after
getting answers w(1), w(2), ..., w(lw|) to questions made to A (if the specified values
are undefined, then we consider them to be equal to $). Obviously, the defined decision
tree T = {(question, result) is polynomial and T'(x,4) = M(x,4A & C) = D(x,4) for all
x,A. Conversely, let a description D be computable by a polynomial decision tree, say
D(x,A) = T(x,A4), where T = (question,result). Then take as C any oracle relative
to which both functions guestion and result are computable in polynomial-time. The
program shown on Fig. 3 defines then a Pc-machine computing D(x, 4).

It is easy to prove that a description D belongs to n.u.NP iff there exists a polynomial
p(n) and a description D’ € n.u.P such that

D(x,4) =1 < 3y € BPFOD/((x, y),4) = 1.

Likewise one can characterize the classes n.u.BPP, n.u.R, n.u.(NPNCo-NP) = n.u.NP
Nn.u.Co-NP, n.u(RNCo-R) = n.u.RNn.u.Co-R. The nonuniform counterpart n.u.PSPACE

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 255

begin
s = initial _state(x);
while resuli(s) = $

do
vy = question(s);
b= A(y);
s 1= next_state(s, b);
od
return result(s)
end.

Fig. 4.

of the class PSPACE can be defined as follows. A branching program is a quadruple
P = (initial state, next _state, question, result),

where initial state:B* — B”, next_state:B* x B — B”, question:B* — B" U {$},
result: B* — {0,1,$}. The value P(x,4) returned by the branching program P on
input (x,4) is computed by the program shown on Fig. 4. Call a branching program
polynomial-space if there exists a polynomial p such that the length of word s does
not exceed p(|x}) in all the steps of execution of that program. It is easy to prove
that

D € nuPSPACE & there exists a polynomial-space branching program P

computing D.

Now we are able to present the second general theorem which is the essence of the
universum method.

Suppose there exists a superuniversum ¥~ such that the following two assertions
hold:

(a’) There is a description K € n.u.Jf" that is correct on any oracle in 1(#") and such
that there are no L € nu..¥ and V € ¥ such that K(x,4)<L(x,4) for any x
and any 4 € V;

(b") for any ¥ € ¥~ and any description M € n.u..# being correct on any oracle in
V there exist N € nu.4" and V' € ¥ such that V' CV and M(x,4)<N(x,A)
for any x and any 4 € V',

Note that (a’) and (b’) are obtained respectively from (a) and (b) by replacing uni-
form classes relativized by H by the corresponding nonuniform classes. The following
theorem states that (a’) and (b’) imply the existence of an oracle H for which (a)
and (b) are true, and hence the existence of an oracle 4 such that 4 £ %1 and
ML A,

To prove that theorem we need some extra restrictions on classes #, ¥, 4 and A4
Let us formulate those restrictions. We would mention that they are rather cumbersome

256 A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258

and therefore it may be bettcr for the reader to skip them and to read the following
theorem assuming that the classes 4, &, .# and .4~ are some of the classes considered
in the previous section.
Call a class & of descriptions a polynomial complexity class if
1. Z consists of polynomial-local descriptions,
2. & includes the class P, and
3. there exist a larger class @’ of descriptions, an enumeration Do, D, D,,... of
that class, and a function ¢ : N x B* x € — N (called complexity function) such
that the following two conditions hold:
(a) Z = {D;|i €N, ¢(i,x,4)< p(|x]) for some polynomial p and all x,4}, and
{b) for all polynomial-time oracle machines Q, R and S outputting respectively
an integer, a binary word and an element of B there exists m such that

Dy(x,4) = Do 4)(R(x,4), S7)
and c(m,x,4)<poly(Q(x,4) + |x + c(Q(x,4),R(x,4),5)),

where 87 stands for the oracle {y € B*|S(x, y,4) = 1}. In particular, if D;
is in &, then the description (x,4) + Di(R(x,4),5%) is in Z, too.
It is easy to verify that all the classes considered in the previous section are poly-
nomial complexity classes. In the next theorem we assume the classes 4", &, .# and
A" to be polynomial complexity classes.

Theorem 17. If a superuniversum ¥ satisfies (') and (b') then V" satisfies (a)
and (b) for some oracle H.

6. When the universum method cannot be used

We say that the universum method can be applied to prove that there exists an oracle
A such that #4 £ %1 and .#* <. if therc exists a superuniversum ¥~ such that
(a’) and (b’) are true. In this section we present two theorems that cannot be proven
by the universum method. We omit their proofs, which can be found in [11].

Theorem 18 (Ker-1 Ko [9]). There exists an oracle A such that

P! = NP* -« PSPACE".

Theorem 19 (Rackoff [13]). There exists an oracle A such that
P! £ R* = PSPACE".

In fact, we can prove that the following corollaries of Theorems 18 and 19 cannot
be proven by the universum method.

A.A. Muchnik, N.K. Vereshchagin! Theoretical Computer Science 157 (1996) 227-258 257

Corollary 20. There exists an oracle A such that

NP? = Co-NP* £ PSPACE

Corollary 21. There exists an oracle A such that

P* £ PSPACE" and Co-NP* c R".

Both Theorems 18 and 19 can be proven by a method that may be called “coding
method” because, in those proofs, some difficult-to-compute information is encoded via
oracle values, to ensure the truth of positive assertion (.#“ <.4"*). To prove Theo-
rem 18, one needs a lower bound by [7, 16] on complexity of computation of PARITY
function by means of AND,OR-circuits of bounded depth, which has a rather compli-
cated proof. Theorem 19 was proved in [13] (in fact, the weaker assertion that P #
R = NP under some oracle was proved there but the proof holds good also for our
case).

Theorem 22. The universum method cannot be applied to prove Corollary 20. ie.,
there exists no superuniversum ¥~ such that (a") and (b') are true for # = PSPACE,
¥ = NP and .# = Co-NP, 4" = NP,

Theorem 23. Corollary 21 cannot be proven by the universum method, i.e., there
exists no superuniversum ¥~ such that (a') and (b") hold for # = PSPACE, ¥ = P
and .# = Co-NP, .1"=R.

Acknowledgements

The authors would like to thank Alexander Razborov and Alexander Shen for helpful
comments and anonymous referee for many corrections.

References

[1] T. Baker, J. Gill and R. Solovay, Relativization of P=?NP question, STAM J. Comput. 44) (1975)
431-442.

[2] M. Blum and R. Impagliazzo, General oracle and oracle classes, in: Proc. 28th Ann. IEEE Svmp. on
Foundation of Comput. Sci. (1987) 118-126.

[3] S. Fenner, L. Fortnow, S.A. Kurtz and L. Li, An oracle builder’s toolkit, in: Proc. 8th Ann. Conf. on
Structure in Complexity Theory, (May 1993) 120-131.

[4] L. Fortnow and J. Rogers, Separability and one-way functions, Manuscript, 1994.

[5] 1. Grollman and A. L. Selman, Complexity measures for public-key cryptosystems, SIAM J. Comput.
17 (1988) 309-335.

[6] J. Hartmanis and N. Immerman, On complete problems for NP N Co-NP, in: International Colloguium
on Automata, Languages and Programming 1985, Lecture Notes in Computer Science, Vol. 194
(Springer, Berlin, 1985).

258 A.A. Muchnik, N.K. Vereshchagin/ Theoretical Computer Science 157 (1996) 227-258

[7] J. Hastad, Almost optimal lower bounds for small depth circuits, in: S. Micali, ed., Advances in
Computer Research, 1989, Vol. 5: Randomness and Computation (JAI Press, Greenwich, CT); see
also Computational Limitations for Small Depth Circuits (MIT Press, Cambridge, MA, 1986).

[8] R. Impagliazzo and M. Naor, Decision trees and downward closures, in: Proc. 3rd Conf. on Structure
in Complexity Theory (1988) 29-38.

[9] Ker-1 Ko, Relativized polynomial-time hierarchies having exactly & levels, SIAM J. Comput. 18 (1989)
392-408.

[10] C. Lautemann, BPP and the polynomial hierarchy, Inform. Process. Lett. 17 (1983) 215-217.

[11] An.A. Muchnik and N.K. Vereshchagin, A general method to construct oracles realizing given
relationships between complexity classes, Tech. Report 500, University of Rochester, 1994,

[12] N. Nisan, Probabilistic versus deterministic decision trees and CREW PRAM complexity, in: Proc.
21th Ann. ACM Symp. on Theory of Computing (1989) 327-335.

[13] C. Rackoff, Relativized Questions Involving Probabilistic Algorithms, in: Proc. 10th Ann. ACM Symp.
on Theory of Computing (1978) 338-342. J. ACM 29 (1982) 261-268.

[14] M. Sipser, On relativizations and the existence of complete sets, in: Internat. Colloq. on Automata,
Languages and Programming 1982, Lecture Notes in Computer Science, Vol. 140 (Springer, Berlin
1982) 523-531.

[15] M. Sipser, A complexity theoretic approach for randomness, in: Proc. 15th Annual ACM Symp. on
Theory of Computing (1983) 330-335.

[16] A.C. Yao, Separating the polynomial-time hierarchy by oracles, in: Proc. 26th Ann. IEEE Symp. on
Foundations of Comput. Sci. (1985) 1-10.

