
Theoretical
Computer Science

Theoretical Computer Science 157 (I 996) 227-258

A general method to construct oracles realizing given
relationships between complexity classes

Andrei A. Muchnik",' , Nikolai K. Vereshchaginb,*.‘,2,3

a Institute of New Technologies, Nizhnjaa Radishchrvskaja IO, Mosco~c~, Russiu 109004
b Deportment of’ Mathematical Logic, Moscow Stare Unioersir_v. Moscon~ I 19899. Russia

Abstract

We present a method to prove oracle theorems of the following type. Let KI. , Kz, and
L 1, , Lz,,, be complexity classes. The method provides a general framework for constructing
an oracle A such that K&, # K[for i = 1,. ,n and L&, # Li, for j = 1,. ,m. Using this
method we obtain several results of this kind. The hardest of them is the existence of an oracle
A such that P” # NPA, PA = BPP” and both Co-NPA-sets and NPA-sets are PA-separable. We
exhibit also two theorems that cannot be proved by this method.

1. Introduction

When people realized that P # NP is likely true but hard to prove (and impossible

to prove by relativizable arguments [l]), they began to prove interesting theorems

under P # NP hypothesis. Interesting problems of this kind arise in cryptography,

where the reliability of all known protocols is based on complexity assumptions even

stronger than P # NP. A very challenging problem is to construct cryptographic

protocols which are provably secure if P f NP. In the present paper we ascertain that

many complexity assertions cannot be proved by relativizable arguments even under

the P # NP assumption and under stronger assumptions. In other words, we construct

oracles relative to which certain Boolean combinations of the P # NP assumption

and stronger ones are true. Moreover, we investigate a general powerful method to

prove such theorems and in the last section we present some theorems which cannot

be proved by that method.

* Corresponding author. E-mail: ver@ium.ac.msk.su, ver@math.math.msu.su.
’ This research was in part supported by a grant from the American Mathematical Society.
’ This research was in part supported by the grant MQTOOO from the International Science Foundation. a
NASMRC COBASB grant, and NSF grant CCR-8957604. Work done in part while visiting the University
of Rochester.

’ All the results in this paper are joint results by both authors. The text was written by the second author.

0304-3975/96/S 15.00 @ 1996 - Elsevier Science B.V. All rights reserved
&SD1 0304.3975(96)00161-l

228 A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Many results of this sort (when an oracle is constructed under which some Boolean

combination of complexity assertions is true) have appeared in literature. The following

results among them deal with the classes considered in the present paper. Rackoff in

[13] constructed oracles A and B such that p = RA # Np and Ps # RB = NPs. In

[l], it was proved that P = NP n Co-NP # NP under some oracle.

In the present paper we prove, for example, that there exists an oracle under which

P # NP and NP-sets are separable, thus we solve the problem left open in [5].4

This implies that reliability of all the cryptographic schemes based on the existence

of one-way functions cannot be derived from P # NP by relativizable arguments

(since one-way functions do not exist if NP-sets are separable). Moreover, we show

that one cannot prove using relativizable arguments that NP-sets are inseparable even

under hypothesis that both Co-NP-sets are inseparable and P # R. The strongest result

of our paper states that there exists an oracle under which P # NP and NP-sets are

separable and Co-NP-sets are separable and P = BPP. In other words, it is impossible

to prove by relativizable arguments even the disjunction “NP-sets are inseparable or

Co-NP-sets are inseparable or P # BPP” under the P # NP hypothesis.

The method used in the present paper goes back to [l]. We call it “the universum

method”. In the present paper we refine that method and apply it to prove the existence

of oracles relative to which certain Boolean combinations of the assertions P = NP,

P = R, P = BPP, P = NP n Co-NP, P = R n Co-R, “NP-sets are P-separable”, and

“Co-NP-sets are P-separable” hold (we are successful in constructing oracles for 13

of 17 possible combinations, thus 4 problems of this kind remain unsolved).

Roughly speaking, the method works as follows. Suppose we want to prove that

there exists an oracle A such that PA # BPPA and PA = RA. First, we define a subset

V (called the univevsum) of the set of all oracles. Second, we choose a sufficiently

powerful oracle H (in all known applications we can take any PSPACE-complete set

as H). Third, we consider machines having two oracles: the oracle H and a varying

oracle B ranging over V. (Thus, every machine of this type accepts a subset of B* x V,

where B = (0, 1) is the input alphabet.) Finally, we prove that there exists a BPP-

machine of this type which recognizes a subset of B” x V recognizable by no P-machine

of this type and prove that for any R-machine of this type there exists a P-machine of

this type recognizing the same subset of B* x V.

Another general method close to ours was presented in the paper [3]. The extension

of that method was applied by Fortnow and Rogers in [4] to prove the existence of

oracles relative to which certain Boolean combinations of the assertions P = NP, P =

UP, P = NP n Co-NP, “NP-sets are P-separable”, and “Co-NP-sets are P-separable”

hold. They succeeded in constructing oracles for all possible combinations.

In a sense our method (as well as the method of [3]) is a special case of the forcing

method (see Section 5.2.1). In Section 6, we prove two negative results that can be

interpreted as that both methods fail to prove the following two theorems: the theorem

4 Independently, this was proven in [3].

A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258 229

that P # R = PSPACE under some oracle [131 and the theorem proven by Ko in [9]

that P = NP # PSPACE under some oracle.

In the next section we introduce some notation. In Section 3, we prove a sample

theorem in full detail to exhibit all main ideas of the method in the simplest situation.

In Section 4 we obtain the main results applying our method. We give there also a

simple proof of the result of [6] that there exists an oracle relative to which P #

NP I? Co-NP # NP and the class NP n Co-NP has a complete problem. In Section

5, we formalize the universum method and formulate two general theorems on the

method. This makes possible to formulate what means that the method fails to prove

the two above cited theorems. All theorems in Sections 5 and 6 are presented without

proofs. The proofs can be found in [111.

2. Preliminaries

We restrict ourselves to binary alphabet B = (0, 1). The set of all binary words is

denoted by B*. The set of all functions from B* into B is denoted by Q. A language

L c B* is identified with its characteristic function. We say that a language L sepurates
languages Lo and L1 if LO(X) = 1 + L(x) = 0 and L,(x) = 1 =+ L(x) = 1 for any

x E B*. Call any language in a class C of languages a C-set. An oracle is an element

of Q.

Denote by (~1 the length of word y.

Let A be an oracle.

A language L belongs to the class PA if there is a polynomial-time Turing machine

MA with oracle A that recognizes L.
A language L belongs to the class NPA if there is a polynomial-time nondeterministic

Turing machine NA with oracle A that accepts L.
A language L belongs to the class Co-NPA if B* \ L is in NPA.

A language L belongs to the class BPPA if there is a polynomial-time probabilistic

Turing machine MA with oracle A such that Prob[MA(x) = l] > i for all x E L and

Prob[M”(x) = l] < i for all x @’ L.
A language L belongs to the class R A if there is a polynomial-time probabilistic

Turing machine MA with oracle A such that Prob[MA(x) = l] > i for all x E L and

Prob[MA(x) = I] = 0 for all x @ L.
A language L belongs to the class PSPACEA if there is a polynomial-space Turing

machine MA with oracle A that recognizes L.
We say that Np-sets (Co-Np-sets) are separable if any two disjoint NP“‘-sets

(Co-NP-sets) are separable by a p-set. If this is not the case, then we say that

NP-sets (Co-NP-sets) are inseparable.
Let N denote the set of nonnegative integers. Denote by B” the set of all binary

words of length n. Denote by B’” (Ban) the set of all binary words of length at most

n (at least n, respectively).

Denote by f]D the restriction of function f to set D.

230 A.A. Muchnik, N.K. Vereshchaginl Theoretical Computer Science 157 (1996) 227-258

Let us define the binary operation @ on languages as follows: B $ C = {Ou 1 u E

B} U { lv 1 v E C} (we denote by xy the concatenation of words x and y).

An interval is a set of oracles having the form

T(V) = {A E Q I VY E Dom(cp) A(Y) = Y(Y)],

where 40 is a function from a finite subset of B* into B, and Dam(q) denotes the

domain of cp.

For a finite set A4 c B* denote by maxZength(M) the maxyEM (y\ and denote by JMI

the number of elements in M.

Let P be a deterministic oracle machine. Denote by Query:(x, B @H) the set of all

y E B* such that P asks ‘B(y) =?’ during the computation on input x with oracle

B @H. Let N be a nondeterministic oracle machine and c be one of its computations

with oracle B @I H on some input. Denote by Queryi(c, B @H) the set of all y E B*

such that N asks ‘B(y) =?’ during the computation c. By P- [NP-, BPP-] machine we

mean a polynomial-time deterministic [nondeterministic, probabilistic] oracle machine.

For a function I/I defined on a finite set D denote by #I$ the number of y E D such

that $(y) = 1 (the notation #a$ is defined in the similar way).

3. A sample application

Theorem 1. There exists an oracle A such that Np-sets are inseparable and Co-Np-

sets are separable.

Proof. The proof of this theorem is very close to the proof of the theorem from [I]

stating that p = Np f+ Co-Np # Np for some oracle A.

Define the sequence of integers ni by induction no = 1, ni+l = 2*“. Let S = {ni I

i E N}. Consider the following set of oracles:

V = {B E 0 I for all n E S there exists at most one y E B” such that B(y) = 1

and for all n E N \ S there exist no y E B” such that B(y) = 1).

Let H be a PSPACE-complete language. The oracle A will have the form B 63 H,

where B is in V. Thus, we have to define the oracle B.

We construct B in such a way that the following sets:

,!$ = (1’ I n E S and there exists y E B”-’ such that B(Oy) = l},

L~={l”In~Sandthereexistsy~B”-‘suchthatB(ly)=l}

are p-inseparable. Obviously, both Li and LB belong to NpeH and are disjoint for

any B E V.

So we have to construct an oracle B E V such that

(1) Lt and ~57 are separable by no PseH-set, and

(2) any two disjoint Co-NPs@“-sets are separable by some PseN-set.

A. A. Muchnik, N. K. Vereshchagin I Theorefical Computer Science 157 (1996) 227-258 231

Let M be a deterministic or nondeterministic machine. Write MA(x) = 1 if M with

oracle A accepts x and write MA(x) = 0 otherwise. Say that a pair (Na,N1) of NP-

machines is correct on A if the languages {x 1 N/(x) = 0} and {x 1 N!(x) = 0} are

disjoint. The assertion (1) means that for any P-machine P the language {x 1 PeeH(x) =

l} does not separate L: from L T. The assertion (2) means that for any pair (No, Nr)

of NP-machines being correct on B @ H there exists a peH-set separating the set

{x 1 N,ReH(x) = 0) from the set {x 1 NrBH (x) = O}. Let PO, PI, ., P,, . be an enu-

meration of P-machines and (Noa, No,), (Nlc,N1r), . , (Nja, N/l), . be an enumeration

of pairs of NP-machines.

In step i, we construct an interval Ti intersecting with V in such a way that

rr > r2 > r3 > . . and the following holds:

if i = 2k + 1, then the language {x 1 PfBH (x) = l} does not separate Lt from Ly

for any B E r, n V and

if i = 2k + 2, then either the pair (Nka,Nkt) is not correct on B @ H for any

B E P, n V, or the languages {x / NheH(x) = 0} and {x 1 NieH(x) = 0} are separable

by a PBeH -set for any B E Ti n V.
Obviously for any oracle B in the set V n nz, Ti the assertions (1) and (2) will

hold.

We start with l-0 = Q. Let us explain what to do on each step. Let

I‘;_, = T(cp) = {B E Sz I Bl Dam(q) = cp}

be the interval constructed on (i - 1)th step. On the ith step we make the following.

Consider two cases.

First case: i = 2k + 1. Pick n E S greater than maxlength Dam(q) and so large

that Pk on input 1” makes less than 2”-’ queries to oracle. Let C be the oracle in

Ti-1 being equal to zero on all the words not in Dom(qo). Without loss of generality

we may assume that P, C@H(ln) = 0 (other case is entirely similar). We know that

I Queuy;#“,C@H)I IS 1 ess than the number of words of length n - 1. Pick a word

z of the form lu in the set B” \ Queq~~~(l”, C @ H). Note that z is not in Dam(q)

since n > maxlength(Dom(cp)). Let

T, = {B E Ti-1 /B(Z) = 1, B(y) = C(y) for all y E QUUJJ~~(l”, C @H)}

Then PfBH(ln) = PteH (1”) = 0 and LT(ln) = 1 for any B E T;, and Ti n V is

nonempty since C U (2) is in Ti n V.

The reader can see that, in fact, we have proved the following lemma, whose analog

will be used in all other proofs.

Lemma 1.1. If an interval r intersects with V then there exists no P-machine P such

that PBeH separates Lt from Lf for uny B E r n V.

Second case: i = 2k + 2. Consider two subcases.

First subcase: There exists an oracle C E Ti-1 r‘l V such that the pair (Nka,Nkt) is

not correct on C @H. Then pick x E B* such that NzoaH(x) = NheH(x) = 0.

232 A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Let

Ti = B E I’-1 1 B(y) = C(y)

for all y E U Query&(co,C~H)UUQuerq’~~,(cl,C~H) .
co Cl 1

The union is over all the computations of Nks (Nki) on input 1” with oracle C @H.

Second subcase: the pair (Nks,Nki) is correct on C@ H for any C E Ti_1 n V. Then

let rl = Ti-1. We have to prove that the sets {X 1 NkBH(x) = 0} and {x 1 NABH(x) = 0}

are separable by a PBBH -set for any B E I’2 n V. This assertion easily follows from

the following two lemmas.

Definition 1. A good machine is a deterministic oracle Turing machine working within

polynomial-space and which on input x makes at most poly(jx() queries.

Lemma 1.2. If r is an interval and (No, Nl) is a pair of NP-machines being correct

on C @H for any C E r n V, then there exists a good machine P such that for any

x and any B E V n r, PB(x) is equal to a j E (0, l} for which NJfaH(x) = 1.

Lemma 1.3. Let P be a good machine. Then there exists a P-machine M such that

PB(x) = MEaH for all x E B*, B E 52 (recall that H is a PSPACE-complete set).

Proof of Lemma 1.2. We describe the work of P on input x with oracle B in the case

B E r n V. The reader can easily modify the program of P to handle the general case.

Machine P with oracle B on input x works as follows. Find first n = ni E S such that

log, n d 1x1 < 2’. Let M be so large that Nj on inputs of length greater than m cannot

query oracle values on words of length n- 2+1 or greater (j = 0, 1). If 1x1 < m then

compute N,BBH(x) directly and return 0 if N,BBH(x) = 1 and 1 else.

Otherwise, make the following. Query the value of B on all the words of length at

most rz_1. The number of such queries is less than 2”1-‘f’ < 21x1. We know B’s value

on all the words that both values NOBeH (x) and NFeH(x) depend on except for words

of length n. Let

Note that C E Vnr, therefore NzeH(x) = 1 or NiceH(x) = 1. Find an 1 E (0, l} such

that N,CaH(x) = 1 and find an accepting computation c of Nj with oracle C @ H on x.

This can be done within polynomial-space by checking all the computations of Na and

Ni with oracle C @ H on input x. All the queries made to H in those computations can

be answered within polynomial-space because their lengths are bounded by poly()xl)

and H E PSPACE. Set W = Queryz,(c, C @ H) nB”. Query ‘B(y) =?’ for all y E W.

If B(y) = 0 for all y E W, then NFeH(x) = 1; in this case return 1. Otherwise we

have found the unique word of length n on which B is equal to 1, and therefore can

A. A. Muchnik, N. K. Vereshchayin I Theoretical Computer Science 157 (1996) 227-258 233

begin

w := A (the empty word);

while resuZt(x, w) = $

commentary: resul~(x,w) is computed in time

poly(Ixl, iwl> by querying H;

do y := question(x, w);

commentary: question(x, w) is computed in

time poly(1x1, Iwl) by querying H;

b := B(y);

w := wb;

od

return vesult(x, w)

end

Fig. I.

find both N,BeH(x) and NreH(x) within polynomial-space without making extra queries

to B.

Obviously, we have made poly(lxl) queries. 0

Proof of Lemma 1.3. Let P be a good machine. Define the functions quesrion(x, w)

and uesult(x, w) as follows. Let w be a binary word of length n. For any i < n denote

by w(i) the ith symbol of w. Run the machine P on input x and give the answer w(1)

to the first query, the answer w(2) to the second query and so on. There are three

possibilities:

(1) P makes exactly n queries and then returns a result say r; in this case set

question(x, w) = $, result(x, w) = r;

(2) P makes n queries and then makes (n + 1)st query, say ‘B(y) =?‘; in this case

set

question(x, w) = y, resuZt(x, w) = $;

(3) P makes less than II queries; in this case set

question(x, w) = result(x, w) = $.

Obviously, both functions question and result are computable within polynomial-

space. Therefore, they can be computed by a polynomial-time machine with oracle H.

Let machine A4 work according the program shown on Fig. 1. 0

The proof of Theorem 1 is finished. 0

All other theorems in this paper are proved according to the presented scheme.

Namely, first a set V of oracles is defined (which is called the universum).

234 A. A. Muchnik, N. K. Vereshchagin / Theoretical Computer Science 157 (I 996) 227-258

PA=Np

41
p=BPp Np-sets are separable

I

Co-Np-sets are separable

\/
PA = RA p = Np n Co-Np

\/
p = RA n CO-RA

Fig. 2. The edges of the drawn directed graph represent relativizable implications (i.e., implications that are

true under any oracle). For example, the implication p = Np + PA = BPPA is true by the well-known

result of Sipser BPF c Zf (P. Ggcs improved that result to BPPA C Ct [151, see also [lo] for the simplified

proofl.

The oracle under which the desired Boolean combination of complexity assertions

holds always has the form B CD H, where H is a PSPACE-complete set.

The desired properties of B are represented as a countable family of requirements on

B and then the diagonal construction is used to satisfy all the requirements. On the ith

step, an interval Ti is constructed such that the ith requirement holds for any B E Tin V.
The requirements are of two types: “negative” ones and “positive” ones (in the above

example the requirements satisfied on odd steps are negative ones and the requirements

satisfied on even steps are positive ones). Negative requirements are satisfied by using

an appropriate analog of Lemma 1.1. Its proof is always easy, therefore we will only

present the analog of languages L: and L y. The positive requirements will be satisfied

by trying first to make the current pair of machines (or single machine in the case of

classes BPP and R) incorrect. The notion of correctness of course will be specific in

each case. If this fails, then we use an analog of Lemma 1.2, which combined with

Lemma 1.3 (common for all the applications of the method) will complete the proof.

Thus, the proof of any specific theorem in the sequel will consist of the definition

of the universum, the definition of analog of languages Lf and Lf and the proof(s) of

the appropriate analog(s) of Lemma 1.2.

4. The applications of the universum method

The assertions on complexity classes to which the method is applied are shown on

the Fig. 2. We apply the universum method to prove the existence of oracles under

which one or another combination of assertions that label the nodes of the graph holds.

There are 17 possible combinations of those assertions. They are listed in the Table 1.

A.A. Muchnik, N.K. Vereshchaginl Theoretical Computer Science 157 (1996) 227-258 235

Table 1

P=NP NP-sets Co-NP-sets P=NP ii P=BPP P=R P=Rn Comment

separable separable separable Co-NP Co-R

I 3 + + + + + + 111
2

,_
:’ B @ + +‘E + + Theorem 13

3 _ ii? ,- \./ 8 + S + Unknown

4 *\ _ 13 @ + 3 + Unknown

5 % 8 + i’ + + Theorem 4

6 _ E 0 + ; % + Theorem 7

7 8 8 + L; __ + Theorem 8

8 7 CB + 1 + + Theorem 2

9 _ :i L_ @ + . . ‘$ + Unknown

10 \ I-’ 3 + I_’ _ _’ + Unknown

II 2 8 @ m ;* + + Theorem 6

12 i e G? ‘_ I 6 + Theorem 9

13 _ Fj 8
;

+ F + Theorem IO

14 _ _ z + + Theorem 3

15 _ _ _ 6 2 @ + Theorem I I
16 c 5 CE Theorem 12
I7 _ _ _ _ _ _ ;- Well known

Note: The signs “+” and “@” put in a line of the table indicate that the corresponding assertIon is true.

The signs “-” and “8” indicate that the corresponding assertion is false. The difference between the signs

“+” and “@” is that the truth of assertions labeled by “+” follows from the truth of assertions labeled by

“0” but the truth of any assertion labeled by “@” does not follow from the truth of other assertions. The

same difference is between the signs “-” and “(I”. The commentary ending each line includes informatlon

about where the combination present in the line is proved.

We are able to prove the existence of oracles under which the combinations of all

the lines but the lines number 3, 4, 9 and 10 are true. In fact, we do not know the

answer to the following question.

Question. Is there an oracle under which Co-NP-sets ure separable and P # BPP?

We shall use only the universums of the form

where Z is a subfamily of the family F of all the functions having the type B” 4 B

for some n t S. In the sequel we denote by F, the set BB’. The set Z is called the

base of V(Z).

The following five standard bases are important for the present investigation:

l Z(< 1) = {x E F / #I c(< l}; this base was already used in the proof of Theorem 1,

l Z(==l)={x~F(#,a=l},

.2(31)={cc~Fj#,r31},

l Z(BPP) = UnE& E F, I #IW @ [f; $I>,
l Z(K) = UnE& E Fn I #lGn ~2 (0; ;I}.

Other bases will be built from these standard bases by the following operation + on

bases: Z’ + Z” = {a E F,, 1 i is even and CI E Z’} U {a E F, / i is odd and x E Z”}.

236 A. A. Muchnik. N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Now, we formulate the five analogs of Lemma 1.1, which will be used to satisfy neg-

ative requirements in the proofs of the next theorems. Their proofs are straightforward

and therefore we omit them.

Lemma 1. Let Z’ be any base and let an interval r intersect with the universum

V = V(Z(< l)+Z’). Then there exists no P-machine M such that MBBH separates

the language

{ 1” 1 n E S, n is even and there exists y E B”-’ such that B(Oy) = l}

from the language

{ 1” 1 n E S, n is even and there exists y E B”-’ such that B(ly) = 1)

for any B E r n V. These languages are in NPBeH and are disjoint for any B E V.

Lemma 2. Let Z’ be any base and let an interval r intersect with the universum

V = V(Z(al)+ Z’). Then there exists no P-machine M such that MBBH separates

the language

{ 1” 1 n E S, n is even and for all y E B”-’ B(Oy) = 0)

from the language

{ 1”) n E S, n is even and for all y E B”-’ B(ly) = 0}

for any B E rn V. These languages are in CO-N~‘~ and are disjoint for any B E V.

Lemma 3. Let Z’ be any base and let an interval r intersect with the universum

V = V(Z(= 1)+Z’). Then there exists no P-machine M such that MBeH recognizes

the language

{ 1’ 1 n E S,n is even and there exists y E B”-’ such that B(Oy) = 1)

for any B E r n V. This language is in Np@n n Co-Np@H for any B E V.

Lemma 4. Let Z’ be any base and let an interval r intersect with the universum

V = V(Z(BPP)+Z’). Then there exists no P-machine M such that MBaH recognizes

the language

{ 1” 1 n E S, n is even and #l(BIB”) > (2/3)2”}

for any B E r n V. This language is in BPPBeH for any B E V.

Lemma 5. Let Z’ be any base and let an interval r intersect with the universum

V = V(Z(R)+ Z’). Then there exists no P-machine M such that MBeH recognizes

the language

{ 1” I n E S, n is even and #l(BJB”) > (l/2)2”}

for any B E r n V. This language is in RBeH for any B E V.

A.A. Muchnik, N.K. Vereshchuginl Thmrrticul Cornpurer Scirnw 157 (1996) 227 258 237

Now, we are going to consider all the lines in the table except lines numbered 3, 4,

9 and 10.

The existence of oracles under which the combinations in the first and in the last

lines hold is well known so we skip those lines.

Theorem 2. NP-sets ure insepuruble, Co-NP-srts ure separable und P = BPP under

some ora& (8th line in the table).

Proof. This theorem strengthens Theorem 1 and its proof uses the same universum

I’ = V(Z(< 1)). All we have to do is to prove the analog of Lemma 1.2 for BPP-

machines. We say that a BPP-machine A4 is correct on an oracle A if M” accepts any

input with probability lying outside the segment [i; $1.

Lemma 2.1. Assumr that r is an interval und M is u BPP-muchine briny correct on

C -3 H for CIMJ~ C E r n V. Then there e.uists a good machine P thut rrcoynke.s ,c,ith

orrrclt~ B the same lunguuge as M does lvith orucle B + H ,fbr any B E V n r.

Proof. Let M and r satisfy the conditions of the lemma. Let us construct P. Let x be an

input to P. In fact, the beginning of the proof of all analogs of Lemma 1.2 is common.

We first find an n = ITi E S such that log, n f 1x1 < 2”, query B’s values on words of

length at most n;_l, then compute the value Prob[MBsN (x)] directly if 1x1 is so small

that MB@“‘(x) may depend on BIB’“’ I. It remains to construct a good machine P’

that on input (x,B/B’“‘-’), where B E V n I‘, decides if Prob[MB@?N(x)] > 5 provided

.Y is so long that MBaH on input x cannot query B’s value on words of length n, + , or

greater.

Let P’ work as follows. Find first the probability p of the event “MCsH(x) = I”,

where C is the oracle being equal to B on words of length different from n and to zero

on remaining words. Note that we know all the values of C needed to find p. Without

loss of generality we may assume that p> 4 (the case p < $ is entirely similar). s

We will use the notion of weight introduced in [14]. For an oracle D let lraD(y)

(the \c&ght of y relutice to D) denote the probability of the event ‘*MD+” at some

moment in the computation on input x queries ‘D(y) =?“‘. It is easy to see that

for any D.

Denote by W the set of all y E Bn such that w&y)> i. Obviously, 1 WI <poly(1x1).

Find IV and query ‘B(y) =?’ for all y E W. Consider two cases.

First case: Viy E W B(y) = 0. Let us prove that then Prob[MB8”(x) = l] > i.

Since M is correct on B SE H the probability q of the event “MB@‘(x) = 1” is either

greater than s or less than f. We claim that the first alternative holds. Indeed, if

5 Since M is correct on C 8 H, we know that in this case p > 5. However we shall not use this fact

because we want the proof to be valid for the case V == V(Z(= I)), in this case p can lie inside the segment

238 A. A. Muchnik. N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

BIB” = CIB”, then q = p>i, therefore q > $. Otherwise denote by y the unique

word of length n such that B(y) = 1. Then WC(~) < i because y 6 IV. Let us make

use of the following

Lemma 2.2. For any oracles D and E,

1 Prob[MD(x) = l] - Prob[M”(x) = l]] < c u%(z).
z~B*:D(r)#fT(z)

Proof. Obvious. Cl

By the above lemma, 1 Prob[MB@H(x) = l] - Prob[MCBH(x) = 111 d WC(~) < i,

therefore, Prob[MB@“(x) = l] > i - i = f. Thus Prob[MBeH(x) = l] > t. Return 1

in the first case.

Second case: 3y E W B(y) = 1. In this case we know all the values of B needed

to compute Prob[MBBH(x) = 11. 0

Theorem 3. There exists an oracle A such that Np nCo-Np # p and BPP = p

(14th line in the table).

Proof. Take the base Z = Z(= 1). The analog of Lemma 1.2 for BPP-machines is

already proved (see the proof of Lemma 2.1 and Footnote 5). 0

Theorem 4. There exists an oracle A such that Np-sets are separable, Co-Np-sets

are inseparable and BPP = p (5th line in the table).

Proof. Let V = V(Z(31)).

Call a pair (No,Ni) of NP-machines correct on A if N:(x) = 0 or N:(x) = 0 for

all x.

To ensure separability of NPA-sets we shall prove the following analog of Lemma 1.2.

Lemma 4.1. Let (No,N,) be a pair of NP-machines being correct on B @H for any

B E V n r. Then there exists a good machine P that for all B E V n r on input x

with oracle B jinds an 1 E (0, l} for which NfBH(x) = 0.

Proof. Let x be the input word. Let n = ni be defined as in the proof of Lemma 1.2.

Assume that the length of x is so large that both machines No,Nl on input x cannot

query oracle values on words of length >ni+l and that n is greater than lengths of

words defining r. Assume that we already know BIBGnl. We have to find an 1 such

that N,BaH(x) = 0.

To this end we shall use the technique from [2]. We need the notion of a certificate.

Let 1 = 0,l. An I-certljicate is a function having the form Cl Query$(c, C@H), where

C is an oracle agreeing with B on all words of length different from n, NFaH(x) = 1

and c is an accepting computation of NlceH on x.

Note that if y is an l-certificate and C continues y, then NFeH(x) = 1. Obvi-

ously, the cardinality of domain of any l-certificate is bounded by a polynomial of

A. A. Muchnik. N. K. Vrrrshchagitt I Theorrticnl Computer Science 157 (I 996) 227-258 23’1

1~1~ say ~(lxl>. A ssume that x is so long that 2” > 2~4x1). We claim that then any

O-certificate 43 is inconsistent with any l-certificate $ (that is, q(y) # $(I’) for some

_v E Dom(cp) n Dam($)).

Indeed, assume that a O-certificate 40 and a l-certificate $ are consistent. Then there

exists an oracle C agreeing with B on words of length different from n that continues

both cp and $. As 1 Dom(cp)l+l Dom($)l < 2” we may assume that there exists J‘ E B”

such that C(y) = 1, that is, C is in c’. 6 Since C continues both cp and $I we have
N,“““(x) = N;.:‘“(x) = 1. Th us the pair ,‘va, Nr is incorrect on C + H and C is in

V n I’. The contradiction proves the claim. C

Let ‘%o [% I] be the set of all O-certificates [l-certificates]. Let U = @I. Repeat p(1.~1)

times the following loop. Pick a O-certificate cp in %O (if 950 is empty then return 0 and

halt). Query ‘B(y) =?’ for all y E Dom(cp) and remove from %O and % 1 all certificates

being inconsistent with BI Dom(cp). Include in U all the elements of Dam(q). (We

will explain further how to perform the described program within polynomial-space.)

Before and after each iteration of the loop all the certificates in $0 U %, agree

with each other on U. On the other hand, in each iteration, any certificate ~9 in % I

is inconsistent with the picked O-certificate q, therefore its domain intersects with

Dom(cp)\ U. Hence the number of elements of the set Dom($)\U decreases after each

iteration of the loop for any l-certificate $ in Vr.

Thus, after p(I.rI) iterations, U includes the domains of all the certificates in %I.

If % r becomes empty, then NySH(x) = 0. Otherwise $50 becomes empty, therefore
N,BG’“(x) = 0.

Obviously, we have made at most p(1~1)~ queries to B.

Let us prove now that the described program can be run within polynomial-space.

We do not need to store %O or VI. It suffices to store the set U and the B’s value on

elements of U.

Having Ii and BI U we can decide if there is a O-certificate [l-certificate] consistent

with BlU by checking all the computations of NO [Nil on input X. If a query ‘B(y) I=?’

is made during one of computations we answer ‘B(y) if 1~1 <ni_r or y is in U (note

that we know B’s value on such words), 0 if n,_t < /?-‘I < II or n < 1~~1 and try all

the answers otherwise. As the number of queries does not exceed poly(lx]) the amount

of stored information is poly((x(). 0

To ensure the equality BPPA =P” we shall prove the following analog of Lemma I .2.

Lemma 4.2. Let A4 be a BPP-machine being correct on B E H jklr any B E 1’ r P.

Then there r.vists a good machine P .such that for an)! B E V n r. PB recognixs the

sume language as MBBH does.

’ In the next theorem we shall need this lemma for V = V(Z(BPP)). In this case we need the inequality

1 Dom(cp)l + 1 Dom($)l < (;)2”. Having this inequality we can find an oracle C being consistent with both

v, and $, agreeing with B on words of length different from n and such that the number of words of length

n in C is greater than ($)2”, that is, we can find C E V n r continuing both cp and 4.

240 A. A. Muehnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Proof. We use some ideas from [121 and [8].

By Lemma 4.1 it suffices to construct a pair (Na,Nt) of NP-machines such that

Prob[MB@H(x) = I] > : + NFeH(x) = 1, N:‘H(~) = 0

Prob[MBBH(x) = l] < f + NrBH(x) = 0, N,BGH(x) = 1

for any x and any B E V I- r. We construct machine Nt (and machine No can be

constructed in the similar way).

Let x be an input and let B be in V n I-. Let n be defined as usually and let x be

so long that M on input x cannot query B’s value on words of length ni+l or greater

and that n is greater than lengths of words defining r.

Denote by k the maximal number of queries that A4 can make on input x. It is

important that k <poly(1x1). Let in the sequel Q(B) denote the set of all the oracles in

V agreeing with B on all the words of length different from n. Note that Q c V n r
so A4 is correct on C @N for any C E Q(B).

For y E B” and D E Q(B) denote by w&) the probability of the event “MDeH on

input x queries ‘D(y) =?“‘.

Let

W = {y E B” I w~(y> > 1/(9k + 3)).

Let us note that since EyEBe w&) < k the set W has at most (9k + 3)k elements.

Claim. IfProb[M5@H(x) = I] > i then Prob[MCBH(x) = l] > $ for uny oracle C E

Q(B) agreeing with B on W.

Proof. Assume the contrary: there exists C E Q(B) agreeing with B on W such that

Prob[@@” (x) = 11 < i. Choose C satisfying these conditions and differing from B

on the least number of arguments. Let U = {y E B” 1 B(y) # C(y)}.

Let us prove that WC(~) > f for any y in U possibly but one. Let y be an element

of U. Denote by C, the oracle obtained from C by changing the value on y. Then

C, differs from B on less arguments than C does. Since C,j W = Bj W, we have

Prob[MCBH(x) = l] > $ provided C, is in Q(B). Let us distinguish two cases.

First case: C, is in Q(B). Then Prob[MC1@H(x) = l] > i. Therefore, by Lemma

2.2, WC(~) 2 Prob[M ‘leN(x) = l] - Prob[MC@H(x) = l] > $ - i = l/3.

Second case: C, # Q(B). Since C, agrees with B on all the word of length different

from n this means that #~(c,lB”) = 0. This may happen only if #l(CJB”) = 1 and

therefore this case can occur for the single y.

As I&B’ w&)bk, we have IUI 63k + 1. Since U n W = 0, we have w&y) <

1/(9k + 3) for any y E U. Hence CyEU we(y) < (1/(9k + 3))(3k + 1) = f. On the

other hand, by Lemma 2.2

_VgUw~(y)> Prob[MB@H(x) = l] - Prob[MCeH(x) = l] > f - f = f.

The contradiction proves the claim. 0

A. A. Muchnik, N. K. Vereshchaginl Theoretical Computer Science 157 (1996) 227-258 241

In a similar way we can prove that if Prob[MBBH l] < f then Prob[MCBH(x) =

11 < f for any oracle C E e(B) agreeing with B on W.

For a set U c B” let O(B(U) denote the set of all oracles C agreeing with B on

all the words of length different from n and on U and such that the number of words

in B” \ U on which C is equal to zero is at most (9k + 3)k. Assume that 1x1 is so

large that 2(9k+3)k < 2”. Then O(B~U)C Q(B) for any U having at most (9k+3)k

elements.

Let us prove that Prob[MBeH(x) = I] > i if and only if

(*) there is U such that IUI <(9k + 3)k and Prob[MC@“(x) = l] > f for any

C E O(BlU).

The implication from the left to the right follows from the above claim since we

can take W as U. Let us prove the implication from the right to the left.

Assume that Prob[MBBH(x) = l] < 4 but there is U such that (U j < (9k + 3)k

and Prob[MCeH(x) = I] > i for any C E O(BIU). Take such U. Let D denote the

oracle in Q(B) agreeing with B on U U W and being equal to 1 on all the words in

B” \ (U U W). Then Prob[MDaH (x) = l] < $ since D agrees with B on W. On the

other hand D is in O(BIU) hence Prob[M”@H (x) = l] > $. The contradiction shows

that Prob[MBBH (x) = l] > 5 if and only if (*) is true.

Let us be given a subset U of B” having at most (9k + 3)k elements. The values

of any oracle C E O(BIU) on words of length less than ni+l can be identified by

means of polynomial amount of information and the value Prob[MC’9H(x) = I] can be

computed within polynomial-space. Thus given U we can decide within polynomial-

space if (*) is true. Therefore given U we can decide in polynomial-time using the

oracle H if (*) is true.

Machine NFeH on input x works as follows. Query the value of B on all the words

of length at most n;_ 1. Then guess a set U c B” having (9k + 3)k elements and accept

if (*) is true. 0

Theorem 5. There exists an oracle A such that NPA-sets are separable, BPP # PA

and RA = PA.

Proof. Let V = V(Z(BPP)). To ensure separability of NPA-sets we need the following

analog of Lemma 1.2.

Call a pair (No,Nt) of NP-machines correct on A if N{(x) = 0 or N,“(x) = 0 for

all x.

Lemma 5.1. Let (No, N1) be a pair of NP-machines being correct on B 8 H fbr un?’

B E V n r. Then there exists a good machine P that for any B E V n r on input x

lvith oracle B finds un 1 E (0, 1) for which NfGH(x) = 0

Proof. This lemma can be proven just as Lemma 4.1. The only difference is that we

have to take x so large that (;)2” > 2p(lx\) (and not 2” > 2p(]xI) as in that proof).

0

242 A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Let us say that a probabilistic oracle Turing M machine is correct on A if for any

x, Prob[MA(x) = l] either is equal to 0 or is greater than i.

We need the following analog of Lemma 1.2.

Lemma 5.2. Let M be a probabilistic polynomial-time oracle machine being correct
on oracle B $ H for any B E V n r. Then there exists a good machine P that with
any oracle B E V n r recognizes the same language as M does with oracle B @ H.

Proof. By Lemma 5.1 it suffices to construct a pair (&,Ni) of NP-machines such that

Prob[MBeN(X) = l] > i + NfaH(x) = 1, N,BeH(x) = 0

Prob[MBeN(X) = l] = 0 + NfeH(x) = 0, N,BBH(x) = 1

for any x and any B E r n V.
It is obvious that there exists an NP-machine NI satisfying this requirement.

Thus, we have to construct an NP-machine No satisfying this requirement. Let x be

an input to No and let B be in V I-S r. Let n = ni be defined in usual way. Assume that

M on input x cannot query oracle values on words of length > ni+i . Let k = poly(1x1)

be the maximal number of queries to B which machine M can make during the work

on input x. Let Q(B) denote the set of all the oracles in V agreeing with B on all the

words of length different from n.
Denote by WC(~) the probability of the event “M C@H(x) on input x queries ‘C(y) =

?“‘. Let W = {y E B” 1 W&J) > &}. Note that [WI < 4k2.

Claim. Prob[MCaH (x) = l] = 0 for any C E Q(B) agreeing with B on W.

Proof. Assume the contrary. Let C be a counterexample. Then for at least one random

string, MC@” (x) = 1. Denote by U the set of all the y E B” such that the query

‘C(y) =?’ is made during the computation of MCeH on x for that random string.

Obviously, 1 UI 6 k. Let D be the oracle agreeing with C on U and with B on remaining

words. If n is large enough, then D is in r. If D belonged to V we would obtain a

contradiction: we know that probability of the event “MDBH(x) = 1” is positive, hence,

this probability would be greater than i. Therefore, by Lemma 2.2, CD(Y)iB(Yj we(y)

would be greater than i. On the other hand, { y I D(y) # B(y)} c U \ W, consequently,

Now we have to explain what to do if D # V, that is,

+4(DiBn) E [(l/3)272/3)27

We know that B E V, i.e., #t(B(B”) $! [(1/3)2”,(2/3)2”]. Without loss of generality

we may assume that #I(B(B”) > (2/3)2”. Then #i(DIB”) > (2/3)2” - IU/. We have

IUI dk = poly(lxl). Th ere ore, f we may assume that 2(UI + JWI <(l/3)2”.

A. A. Muchnik, N.K. Vereshchayinl Theoretical Compuier Science 157 11996) 227-258 243

As (l/3)2” <#o(D(B”), there exists a set T c B” having exactly]U(elements, not

intersecting with UU W and such that D(y) = 0 for any y E T. Take such T and change

the value of D on all the words in T. Now we have #t(D]B”) > (2/3)2”, therefore

D is in V. As D(y) = C(y) for any y E U, we have Prob[MDBH(x) = I] > 0.

Therefore, Prob[MDeH(x) = l] > i.

Recall that Prob[MBBH(x) = l] = 0. Hence, by Lemma 2.2,

c
@VW(l)

n%(y) > 1;

On the other hand,

The contradiction proves the claim. n

The rest is as in the proof of Lemma 4.2.

For a set U c Bn let O(B(U) denote the set of all oracles C agreeing with B on

all the words in U and on all the words of length different from n and such that the

number of words in B” \ U on which C is equal to zero is at most k. Assume that 1x1

is so large that 4k2 + k < 2”-‘. Then O(B(U) c Q(B) for any U having at most 4k2

elements.

Let us prove that Prob[MBBH(x) = l] = 0 if and only if

(*) there is U such that IUI < 4k2 and Prob[MC‘@H(x) = I] = 0 for any

C E O(BIU).

The implication from the left to the right follows from the claim. Let us prove the

implication from the right to the left.

Assume that Prob[MBaH(x) = l] > i but there is U such that jU/ <4k2 and

Prob[MCBH (x) = l] = 0 for any C E O(BlU). Take such U. Let us fix any random

string for which MBBN(x) = 1 and denote by R the set of y E B” such that the query

‘B(y) =‘?’ was made during the computation of MBaH on input x for that string. Let

D denote the oracle in Q(B) agreeing with B on U U R and being equal to 1 on all

the words in B”\(U U R). Then Prob[MD”‘H(x) = l] > 0 since D agrees with B on R.

On the other hand D is in O(B(U) hence Prob[MDeH (x) = 11 = 0. The contradiction

shows that Prob[MB@“(x) = l] = 0 if and only if (*) is true.

So machine NOB@” on input x works as follows. Query the value of B on all the

words of length at most n,_ 1. Then guess a set U c B” having 4k2 elements and accept

if (;I;) is true. 0

Thus the theorem is proved. 0

The above proven facts on the five standard universums are shown in Table 2. The

sixth line in the table contains unproven facts about the universum V(F) (recall that F

denotes the set of all functions from lJnES B B” into B). This information is presented

for the sake of completeness.

244 A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Table 2

NP-sep. Co-NP-Sep. NP n Co-NP BPP R

V(Z(<l)) - _ + + + +
V(Z(=l)) - _ _ + +

V(Z(>l)) + _ + + +

V(Z(BPP)) + - (0) + _ +

V(W)) + - (o) + _ _

V(F) + (0) - (0) + (0) + (0) + (0)

Note: The sign + in a line of the table indicates that the analog of

Lemma 1.2 is true for the corresponding universum. The sign - in a

line of the table indicates that the analog of Lemma I. 1 is true for the

corresponding universum. The letter o means that the proof was omitted

(because we do not need the corresponding assertion).

In the proofs of the next theorems we use bases obtained by addition from the five

standard bases.

Theorem 6. There exists an oracle A such that Np-sets and Co-Np-sets are in-

separable, Np n Co-Np = p and BPPA = p (11 th line in the table).

Proof. Let V = V(Z(< 1)+Z(31)). Let us prove first the analog of Lemma 1.2 for

NP n Co-NP-machines.

Lemma 6.1. Let (Na,N,) be a pair of NP-machines such that the languages accepted

by NOB@” and NFaH are complementary for any B E V n r. Then there exists a good

machine P that with any oracle B E V n r accepts the same language as NQ does

with oracle B @H.

Proof. Let r, NO and Ni satisfy the conditions of the lemma.

Machine P works as follows. Let x be the input. Let n = ni E S be defined by

inequalities log, n < 1x1 < 2”. If i is even then by definition

CXEZ H #,a<1

for any CI E F,. In this case we consider (Ns,Ni) as a pair defining a problem of

separation of Co-NP-sets and reason as in the proof of Lemma 1.2.

If i is odd, then by definition

for any SI E F,. In this case we consider (No,Ni) as a pair defining a problem of

separation of NP-sets and reason as in the proof of Lemma 4.1. 0

The analog of Lemma 1.2 for BPP-machines can be proved similarly. 0

To prove Theorems 7-12 we do not need any new ideas. Therefore we shall only

present the bases used in their proofs.

Theorem 7. There exists un oracle A such that Np-sets are separable, Co-Np-sets

are inseparable, BPF # PA, RA = p (6th line in the table).

A. A. Muchnik, N. K. Vrreshchuyin I Theorrticnl Cotnpurer Scienw l-57 (IY96) 227-258 2‘4s

Proof. Take the base Z = Z(BPP) + Z(al). C

Theorem 8. There exists an oracle A such that Np-sets are .separuhle, Co-NY’-sets

ure insepurahlr und P” f RA (7th line in the tub/r).

Proof. Take the base Z = Z(R) + Z(21). 0

Theorem 9. There exists an oracle A such that Np-sets are insepurahle, Co-NP”-

xts are inseparable, BPF # PA, Np n Co-Np = p and RA = p (12th line irz

the ruble).

Proof. Take the base Z = Z(< 1) + Z(>/I) + Z(BPP). 0

Theorem 10. There exists an oracle A such thut Np-sets are insepuruble, Co-NP”-

.srts arc insepurable, RA # p und Np n Co-NE”’ = PA (13th line in the ruble).

Proof. Take the base Z = Z(d 1) + Z(21) + Z(R). 0

Theorem 11. There exists un oracle A such that NFY’ n Co-NP4 # PA, BPP” # pi’

und R” = P4 (15 th line in the table).

Proof. Take the base Z = Z(= 1) + Z(BPP). C_

Theorem 12. There exists an oracle A such that Np n Co-Np # PA, R” # P” crnd

R” f~ Co-RA = PA (16th line in the ruble).

Proof. Take the base Z = Z(= 1) + Z(R). 0

The next theorem completes theorems shown in the Table 1. To prove it we need

many universums.

Theorem 13. There exists an oracle A such that p # Np, Np-sets we sepuruhlr,

Co-Np-sets ure separable and BPP.” = p (second line in the table).

Proof. We use a diagonal construction as in the proof of Theorem 1 but instead of a

chain of intervals we construct a chain

where T,‘s are intervals and Vi‘s are subsets of .Q. All universums Vi’s are taken from

the family { V(Zj) 1 j > 1}, where Zj = nrztS {x E F, 1 #I x <n/j}. Since all the sets in

this family are closed in Cantor’s topology, the intersection n:, T; n V, is nonempty.

The oracle A as usually will have the form B $H, where H is a PSPACE-complete

set. The set in NPA \ PA will be LB = { 1” 1 n E S, 3~ E B” B(u) = l}.

We do not present the whole diagonal construction but instead present only specific

points. The steps on which we satisfy the requirement LB # PBsH are made as usual:

on those steps we do not need to change current universum.

246 A.A. Muchnik, N.K. Vereshchayinl Theoretical Computer Science 157 (1996) 227-258

Current universum is changed on steps on which we satisfy the requirement of

separability of NP-sets. We have now to use the following analog of Lemma 1.2.

Lemma 13.1. Assume that NO, NI are NP-machines such that the languages accepted

by NoBBH and NFeH are disjoint for any B E r n V(Zj). Then there exists a good

machine separating those languages for any B E r n V(Z2j).

Proof. Let the conditions of the lemma be true. The good machine separating those

languages works on input x as follows. Let n = ni be defined as usually. An l-certificate

(I = 0,l) is a function of the form Cl Queryg,(c, C @H) n Bn), where C is an oracle

in r n V(Z2j) agreeing with B on words of length different from n, NtcBH(x) = 1 and

c is an accepting computation of Nice” on input x.

Let us prove that any O-certificate is inconsistent with any l-certificate. Assume the

contrary: some O-certificate cp is consistent with some l-certificate $. Let

1

CP(Y), if Y E Dom(cp);

‘(‘) =
$(v), if Y E Dam($);
B(y), if IyI # n;

0, otherwise.

As #i q < n/2j and #i $ d n/2j, we have

hence C E r n V(Zj). On the other hand NtBH(x) = NiceH(x) = 1. The contradiction

shows that any O-certificate is inconsistent with any l-certificate.

Further we can reason just as in the proof of Lemma 4.1. 0

Lemma 13.2. Assume that No,N, are NP-machines such that the languages accepted

by NOBeH and NfaH span B* for all B E r n V(Zj). Then there exists a good

machine that on input x with any oracle B E r n V(Zj) finds an I E (0, 1) such that

N,BBH(x) = 1.

Proof. The good machine that finds 1 works on input x as follows. Start with the oracle

C that is equal to B on words of length different from n and to zero on remaining

words. Find an 1 such that NlceH (x) = 1 (such I does exist since C is in V(Zj) n r).
Then we either discover that N,BeH(x) = NFBH(x or n auEB”suchthatB(u)=l.) fi d

In the latter case include u in C and repeat the process.

After at most k = [n/j] + 1 iterations we will halt since #,(BIB”) < k. 0

We need also the analog of Lemma 1.2 for BPP-machines:

Lemma 13.3. Let A4 be a BPP-machine being correct on B@H for any B E V(Zj)nr.

Then there exists a good machine P such that PB recognizes the same language as

MBBH does for any B E V(Zj) n I-.

A.A. Muchnik, N.K. Vereshchuyinl Theoretical Conzputer &ience 1.57 (1996) 227-25X 241

Proof. Let the conditions of the lemma be true. We have to construct a good machine

that with any oracle B E V(Zj) n r recognizes the same language as MBqH does. Let

that machine work as follows. Let x be the input. Let n be defined as in Lemma 1.2.

Let the oracle C be equal to B on words of length different from n and to zero on

remaining words. Let U = {u E B” (w($u) > & }, where k stands for the polynomial

upper bound for the number of queries made by M on input x and IVC(U) denotes the

probability of event “MCSH on input x queries ‘C(U) =?“‘. Query ‘B(u) =?’ for all

ZI E U. If there exists no u E U such that B(u) = 1 then by Lemma 2.2

1 Prob[MBBH(x) = l] - Prob[M““H(x) = 1]1< C
v:Ct r)#lX 1’1

w(-(y)<k & = I.‘3

Therefore, in this case MBeH accepts x iff MCGH accepts x.

Otherwise include in C all those u E U which are in B and repeat the process.

After at most 1 = [n/j] + 1 iterations we will halt since #j(BIB”) < 1. il

Let us present one more application of the universum method consisting in the new

proof of a known theorem.

Theorem 14 (Hartmanis and Immerman [6]). TI we exists an oracle A such thut PI’ 9’

NP;’ n Co-Np # Np and the class Np n Co-Np has an m-complete Ianguu~qe.

Proof. It is sufficient to construct an oracle A such that NP n Co-NP” # P”,

NPA < Co-Np and the class NPA n Co-Np has an m-complete language. The oracle

A will have the form B @ H, where H is a PSPACE-complete set. Thus, we have to

construct the oracle B.

Take the universum

V = {A E Ql##l(AIBn) = 1 for any even n and #1(AlB”)61 for any odd u}.

The language in NPA\Co-Np will be

Ly={l”ln isoddand3uEB” B(u)==l}.

The language in NP” n Co-Np\P” will be

Lt = { 1”) II is even and 3~ E B”-‘B(lu) = 1).

Obviously, Ly E NP and 15; E NP nCo-NP for any B E V (recall that A = B,i:* H).

Thus, we have to construct an oracle B E V such that

1. LB 6 Co-NP;

2. L; $Z P4;

3. NPA n Co-N@ has a complete language.

To this end let us enumerate all the polynomial-time deterministic and nondeter-

ministic oracle machines and all the pairs of nondeterministic polynomial-time oracle

248 A. A. Muchnik, N. K. Vereshchayin I Theoretical Computer Science 157 (1996) 227-258

machines. In usual way we construct a chain

of intervals such that any Ti intersects with V and the following holds. If i = 3k,

then kth nondeterministic machine does not accept the language (0, l}* \Lf for any

B E Ti n V. If i = 3k + 1 then kth deterministic machine does not recognize the set

Lf for any B E Ti f’ V. And if i = 3k + 2 then either the languages accepted by the

nondeterministic machines in kth pair are complementary for any B E Ti n V or those

languages are not complementary for any B E Ti n V.

Take any oracle B in nz, Tin V. The assertions 1 and 2 are true. It remains to prove

that Np n Co-Np has a complete language. Denote by Nj the jth nondeterministic

polynomial-time Turing machine and by pJlx[) a polynomial restricting its running

time.

For C E Sz denote by C” the word of length 2”+’ - 1 encoding C’s value on words

of length at most n in lexicographic order.

Let us note that a pair (N,,Nk) of NP-machines defines a language in NpeH n
Co-NpeH iff Nj(x,B 69 H) + N k(x, B @I H) = 1 for any X. As a complete language we

take the following language:

LB = {(j,k,B”,x,O pl(lxl)fpA(lxJ)) 1 j, k, Iz E N, Nj(x, B @ H) = 1

and Nj(x,C@H)+Nk(X,C@H)= 1 for any C E Vnr(B 1 B”“)}.

: LB is in Np Let us prove that LB is in Np 0 Co-Np. To this end let us prove that

(the remaining part LB E Co-Np can be proved entirely similar).

Let us construct first a nondeterministic polynomial-space oracle machine that accepts

LB and makes polynomial number of queries.

Let w be an input word. Decide first whether w has the form

for some D E V and some j, k, n. Then decide whether B” = D” and whether Nj(x, C @

H) + Nk(x, C 6~ H) = 1 for all C E V such that C” = D” (this can be done within

polynomial space since both values N/(X, C@H) and Nk(x, C’@H) depend only on value

of C on words of length at most pi(lxl)+ pk(/X(), therefore all the needed information

about C can be written within polynomial space). If this is not the case, then reject.

Otherwise run Nj on input x with oracle B @ H and accept if N,(x, B @ H) = 1.

As in the proof of Lemma 1.3 we can convert the constructed nondeterminis-

tic polynomial-space machine into a nondeterministic polynomial-time machine with

oracle H.

Thus, it remains to prove that LB is complete in Np n Co-Np. Let a language L be

in Np n Co-Np. Let (Nj, Nk) be a pair of nondeterministic polynomial-time oracle

machines such that L(x) = Nj(x, B @ H) = 1 -Nk(x, B @ H) for any X. The construction

of the oracle ensures that there exists 12 such that Nj(X, C@H)+Nk(x, C@H) = 1 for any

A.A. Muchnik, N.K. Vereshchaginl Theoretical Computer Science 157 /1996) 227-258 249

C E V n T(B 1 BGn). Let us fix such an IZ. The mapping x H (j, k,B”,x,OP~(I”l)‘P:(I”/))

reduces L to LB. q

Remark. In a similar way we could prove all the previous theorems in a stronger form:

we could add the assertion that all the involved classes have complete problems.

5. General theorems

In this section we formalize the method applied in the previous section. All the

theorems are presented here without proofs. The proofs may be found in [111.

5.1. Basic dqfinitions

We deal with decision problems as well as with separation problems. It is convenient

to consider a decision problem as a particular case of a separation problem.

Definition 2. A separation problem is a function P from B* into (0, 1, *} (the meaning

of this definition is as follows: we have to separate the set {x 1 P(x) = 0) from the

such that L(x) # * for all set {x / P(x) = 1)). A language is a separation problem L

x E B*.

For any probabilistic polynomial-time oracle machine M

i

1, if Prob[MA(x) = l] > $;

M(x,A) = 0, if Prob[MA(x) = l] < $;

#, otherwise.

consider the mapping

(1)

In the sequel we do not distinguish the machine M and the mapping (x, A) H hf(x. A))

Call any mapping from B* x Sz into (0, l,#} an orucle machine.

Likewise, consider for every pair

machines the mapping

(1, if N;(x) = 1, N;(x) = 0;

N;(x) = 1; 13, N(x,A) =
0, if N/(x) = 0,

*, if N/(x) = N?(x) =: 0;
\

#, if N:(x) = N;(x) =: 1.

N = (No, Ni) of polynomial-time nondeterministic

Definition 3. A description is a mapping from the set B* x Q into the set (0, 1, #, *}.

A description D is called correct on an oracle A if D(x,A) # # for all x E B’.

For example, (1) and (2) are descriptions, and (1) is an oracle machine.

Definition 4. For a description D and for an oracle A denote by & the mapping

x H D(x,A). Given a class 9 of descriptions and an oracle A denote by BA the set

{@ (D E 9 and D is correct on A}.

250 A. A. Muchnik. N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

Obviously, if A4 is an oracle machine being correct on A, then MA is a language.

Denote by BPP the set of all descriptions having the form (l), where A4 is a

probabilistic polynomial-time oracle machine. (We use bold face letters for classes of

languages, e.g., BPP, and roman letters for classes of descriptions, thus, BPP # BPP,
however BPPA = BPF for any A).

Denote by NP-separation the class of all descriptions of the form (2), where No

and Ni are polynomial-time nondeterministic oracle machines. Likewise one can define

Co-NP-separation, as well as classes of machines P, NP, R, R n Co-R, NP n Co-NP,

PSPACE.

Say that a separation problem PI is easier than a separation problem P2 (PI <Pz

in symbols) if PI(X) # * implies Pz(x) = PI(X). In other words, Pi(x) <Pz(x) for all

x E B*, where d denotes the partial ordering on the set (0, 1, *} defined by inequalities

* < 0, * 6 1. Given classes KI and K2 of separation problems we write K1 < K2 if for

any PI E KI there exists P2 E K2 such that PI <P2. Obviously, if KI is a class of

languages, then Kl< K2 means the same as K1 c K2. For example, BPP <PA means

the same as BPP c p and (NP-separation)A <PA means that Np-sets are separable.

5.2. The most general scheme of the universum method

The universum method can be applied for proving theorems of the following form.

Let

Xl ,..., .f,,, 21, y,, J@l,...,~m, JfI,...,J~M

be classes of descriptions. We want to prove that there exists an oracle A such that

X4 519; for i= l,...,n

dHf<Jy for j = l,...,m.

Consider for simplicity of notation the case m = n = 1.

Let us call a universum any nonempty subset V of Q.

Definition 5. A superuniversum is any countable family -Y- of universums having a

largest universum up to inclusion and such that the following two assertions hold:

1. For any V E Y and for any interval r intersecting with V there exists V’ E Y

such that V’ c V n r.

2. For any countable chain VI > V2 > V3 >. . of elements of Y the intersection nr, V,

is nonempty.

The reader can see that in all the applications presented in this paper, the elements of

v have the form V n r, where r is an interval and V is closed in Cantor’s topology,

and therefore are closed too (recall that Cantor’s topology is the topology the base

of which is the set of intervals). This implies Condition 2 because Q is compact in

Cantor’s topology.

A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (19963 227~ 2_i8 251

For example, if V is closed in Cantor’s topology, then the family

Y~‘(V) = {V n r 1 r is an interval intersecting with V)

is a superuniversum. Such universums were used in the proofs of Theorems l-12

and 14. The single exception was Theorem 13.

The largest universum in Y‘ is denoted by l(Y ‘).

Thus, we wish to prove that there exists an oracle A for which

N”<. I’,“.

where X’, 9, .K, . I- are classes of descriptions. The method can be applied only

if .X, 9, , N, and .t,” are countable and consist of the so called polynomial-local

descriptions.

Definition 6. A description D is called polynomiul-locul if the following holds. There

exists a polynomial p(n) such that for all x E B* and all A,B E 52 if AIBSP(‘-“) =

BIBGpP(IX’), then D(x,A) = D(x,B).

The first general theorem holds for any countable classes of polynomial-local de-

scriptions. Obviously, all the classes considered in the previous section consist of

polynomial-local descriptions.

Let H be an oracle and 2 be a class of description.

Notation 1. Denote by 9~ the class of descriptions { (x,A) ++ D(x, A @ H) 1 D E 2).

For example, BPPH is the class of descriptions of the form (l), where A4 is a

polynomial-time probabilistic oracle machine having an extra oracle H. And generally,

if X is a class of machines of certain type, then .X ‘H is the class of machines of that

type having the extra oracle H.

Assume that for a superuniversum 9‘ and for an oracle H the following two asser-

tions are true:

(a) There is a description K in X’H that is correct on any oracle in l(7 ‘) and

such that there are no L E 2’~ and V E Y such that K(x,A)<L(x, A) for

any x and any A E V;

(b) for any V E -I“ and any M E ;&‘H being correct on any oracle in V there

exist N E ;1 ‘H and V’ E I ^ such that 1” c V and M(x,A) <N(.\-, A) for any

x and any A E V’.

We claim that in this case there exists an oracle A such that .Y’ 6 .Y4 and

MA < 1 ‘A.

Theorem 15. Let Y, 9, _4?, and ,$’ be countable clusses of polynomial-local descrip-

tions, H be un oracle and Y be a superuniversum such thut (a) and (b) are true.

Then there exists un orucle A such that .XA 6 2’ and &MA d&/t’*.

252 A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

52.1. A generalization of Theorem 15

A natural question is if the above theorem can be generalized to involve other

assertions on relativized classes, for example, “X’ has a complete problem”. The

answer is affirmative.

The general approach is as follows. Suppose we wish to prove that there exists

an oracle A such that an assertion q(A) on complexity classes is true. Suppose that

the assertion q(Y) can be expressed by a closed formula in a first-order language

having atomic formulae of the form P(xi,. . . ,x,, Y), where each variable xi ranges

over a countable set (possibly, different for different variables). (When we say that

a formula is closed we do not consider Y as a variable.) For example, the assertion

Zy 6 9’ A J&” < ,Yy can be expressed by the following closed formula:

3K E X(vx E B*K(x, Y) # # A -3L 6 Lfvx E B*K(x, Y) dL(x, Y))

/‘v&4 E J?‘(vx E B*M(x, Y) # # A dN E JWX E B*M(x, Y) < N(x, Y))

having atomic formulae “K(x, Y) = #“, K E X, “M(x, Y) = #“, M E ~$2, “K(x, Y)b

_L(x, Y)“, K E sf, L E 2, “M(x, Y) < N(x, Y)“, A4 E ~62, N E ,Ir.

Let -Y- be a family of non-empty subsets of s2, satisfying the Condition 2 in the defi-

nition of superuniversum. Call a set W C Sz pseudo open if for any Y in V intersecting

with W there exists V’ in V such that V’ c V n W. (Note that we do not require V to

be a base of a topology.) Let us enrich our language by constants attached to all the

elements from the domains of all the variables. Assume that the following condition

is true:

(**) for any atomic formula P(xi,. . . ,x,, Y) for any values al,. . ,a, of xi,. . .,x,

the set {A E QlP(al,. . . , an,A)} is pseudo open.

Note that Condition 1 in the definition of superuniversum implies that all the sets

{A E Q)P(x,A) = #},{A E QlP(x,A) # #},{A E QIP(x,A)dQ(x,A)}, and {A E

Q I PkA) d!&J)l are pseudo open for any x E B* and any polynomial-local de-

scriptions P and Q.

Let us define the forcing relation V k q(Y), where q(Y) is a closed formula of

the enriched language. We use induction on the number of symbols in cp(Y). Assume

that only connectivities A and 1 and only the quantifier 3 are used in formulae.

1. If cp(Y) is atomic, then V k cp(Y) if q(A) is true for all A E V.

2. Vkq(Y)A$(Y) if Vtq(Y) and Vk$(Y).

3. V k 3z E Z(p(Y, Z) if there exists b E Z such that V k cp(Y, b).

4. V t -cp(Y) if V’ v q2(Y) for all V’ C V.

Obviously, the forcing relation is monotone, i.e., if V k cp(Y) and V’ c V, then

V’ i- cp(Y).

Lemma 6. For any closed atomic formula cp(Y), V I- lq(Y) ifs the formula IV(A)

is true for all A E V.

Proof. This easily follows from (**). 0

A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258 253

We claim that if -Y- satisfies Condition 1 in the definition of superuniversum, then

the assertion (a) means that l(V) t X”r 6 2” and the assertion (b) means that 1(‘I ‘) 1

&‘y < L,lVy, thus (a)/$b) means that l(7’) k (3” fi Yy&fly 6. tPy). Indeed, by above

lemma, Condition 1 implies that for all polynomial-local descriptions P and Q, for all

x E B*, both sets {A E Q / P(x,A) = #} and {A E Q 1 +(x,A) <Q(x,A)} are pseudo

open and therefore V k tix E B* P(x, Y) # # iff P is correct on any oracle in V and

V k tlx E B*P(x, Y)<Q(x, Y) iff P(x,A)bQ(x,A) for any A E V and any X. Therefore,

l(V) k Xy $ 9’ means that there exists K E 37 being correct on any oracle in 1(‘f)

such that there exist no V and L E 9 such that K(x,A) <L(x,A) for any A E V and

any .Y. Likewise the assertion l(V) k ;ll” <.;I*‘ means that for all M E -4 and all

V, A4 is incorrect on some oracle in V or there exist V’ c V and N E I such that

M(x, A)<N(x,A) for any A E V’ and any x.

The following theorem generalizes Theorem 15.

Theorem 16. Let q(Y) be un assertion such thut Vo k q(Y) &jr some Vo in f ‘_ Then

there exists A such that q(A) is true.

5.3. Non-un{formity

Thus, if we want to prove that there exists an oracle A such that XA $9’ and

.N” d .>b “, then we have to find a superuniversum V- and an oracle H such that (a)

and (b) are true. In this form the method is universal. Indeed, if there exists an oracle

A such that XA 6 6aA and .AA <.,1 .A then both (a) and (b) hold for Y = {{A}},

H = 8 or for Y“ = {{a)}}, H = A.

Now we describe the very universum method. It does not use any notion of com-

putability. It is not universal as we will see in Section 6.

Given a class 9 of descriptions define the nonuniform counterpart of the class ‘s as

follows.

Definition 7. The nonuniform counterpart of a class % of descriptions is the class

n.u.2 = U gc.
CER

For particular classes of descriptions we can give equivalent definitions using no

notion of computability. Let us do this for the classes considered in the previous

section. To do this we have to define the notion of a Boolean decision tree and the

notion of a branching program. More exactly, we define families of decision trees and

families of branching programs; for the sake of brevity we omit the word “family”.

A Boolean decision tree (or simply decision tree) is a pair

T = (question, result),

where question is a function from B’ x B* into B* U {$}, result is a function from

B* x B” into (0, 1, $}. The decision tree T computes the description (x, A) H T(x, A)

254 A. A. Muehnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

begin

W := A;

while result(x, w) = $

do

y := question(x, w);

b := A(y);

w := wb;

od

return resuZt(x, w);

end.

Fig. 3

defined as follows: T(x, A) is equal to the result returned by the program shown in

Fig. 3. (We assume that this program always halt.)

Call a decision tree polynomial if

(1) there exists a polynomial p such that 1question(x,w)l dp(lxI, Iwl) for any x,

w E B* and any A E 52 and

(2) the program shown on Fig. 3 halts after executing poly(1x1) loops; it is important

that in this case the program makes only poly(1x1) queries to A.

It must be stressed that we do not require any computability of functions question

and result. Obviously, if both functions question and result are polynomial-time com-

putable, then the description T(x, A) can be computed by a polynomial-time oracle

machine.

We claim that a description D is in n.u.P iff D can be computed by a polynomial

decision tree. This is quite easy: let D be in n.u.P, say D(x,A) = M(x,A @ C), where

M is a polynomial-time oracle machine and C is an oracle. Then let question(x, w)

be the question to oracle A made by A4 after getting answers w(1), w(2), . . ., w(Iwl)

to previous questions made to A and let result(x,w) be the value returned by M after

getting answers w(l), w(2), . . ., w([WI) to questions made to A (if the specified values

are undefined, then we consider them to be equal to $). Obviously, the defined decision

tree T = (question, result) is polynomial and T(x,A) = M(x, A @ C) = D(x, A) for all

x,A. Conversely, let a description D be computable by a polynomial decision tree, say

D(x, A) = T(x,A), where T = (question, result). Then take as C any oracle relative

to which both functions question and result are computable in polynomial-time. The

program shown on Fig. 3 defines then a PC-machine computing D(x,A).

It is easy to prove that a description D belongs to n.u.NP iff there exists a polynomial

p(n) and a description D’ E n.u.P such that

D(x,A) = 1 u 3y E BP+‘)D’((x,y),A) = 1.

Likewise one can characterize the classes n.u.BPP, n.u.R, n.u.(NPnCo-NP) = n.u.NP

nn.u.Co-NP, n.u.(RnCo-R) = n.u.Rnn.u.Co-R. The nonuniform counterpart n.u.PSPACE

A. A Muchnik, N.K. Vereshchaginl Theoretical Computer Science 157 (1996) 227-258 255

begin

s := initialstate(

while result(s) = $

do

y := question(s);

b := A(v);

s := nextstate(s, b);

od

return result(s)

end.

Fig. 4.

of the class PSPACE can be defined as follows. A branching program is a quadruple

P = (initialstate,nextstate,question, result),

where initial-state: B* + B*,nextstate: B* x B + B*, question: B* + B* U {$},

result: B* + { 0, 1, $}. The value P(x, A) returned by the branching program P on

input (x,A) is computed by the program shown on Fig. 4. Call a branching program

polynomial-space if there exists a polynomial p such that the length of word .s does

not exceed p(1x1) in all the steps of execution of that program. It is easy to prove

that

D E n.u.PSPACE w there exists a polynomial-space branching program P

computing D.

Now we are able to present the second general theorem which is the essence of the

universum method.

Suppose there exists a superuniversum V/’ such that the following two assertions

hold:

(a’) There is a description K E n.uX that is correct on any oracle in l(%“) and such

that there are no f. E n.u.9 and V E Y“ such that K(x,A)<L(x,A) for any x

and any A E V;

(b’) for any V E Y‘ and any description M E n.u.A being correct on any oracle in

V there exist N E n.u.jC’” and k” E V such that V’ c V and M(x,A) <N(x, A)

for any x and any A E V’.

Note that (a’) and (b’) are obtained respectively from (a) and (b) by replacing uni-

form classes relativized by H by the corresponding nonuniform classes. The following

theorem states that (a’) and (b’) imply the existence of an oracle H for which (a)

and (b) are true, and hence the existence of an oracle A such that XA $ _Yp” and

L 1p < 1 ‘A.

Tcprove that theorem we need some extra restrictions on classes X, Y, A! and .;I ‘.

Let us formulate those restrictions. We would mention that they are rather cumbersome

and therefore it may be better for the reader to skip them and to read the following

theorem assuming that the classes X, 9, .A! and ,V are some of the classes considered

in the previous section.

Call a class 9 of descriptions a polynomiaZ complexity cluss if

1. B consists of polynomial-local descriptions,

2. S includes the class P, and

3. there exist a larger class 9’ of descriptions, an enumeration Da, Di ,02, . . of

that class, and a function c : N x B* x 51 + N (called complexity function) such

that the following two conditions hold:

(a) 9 = {Di 1 i f N, c(i,x,A)dp(IxI) f or some polynomial p and all x,4}, and

(b) for all polynomial-time oracle machines Q, R and S outputting respectively

an integer, a binary word and an element of B there exists m such that

Qt&J) = ~,,wdWA~~SI
and c(m,.x,A)~poly(Q(~,A) + (X + c(Q(x,A),R(x,A)J;)),

where S;’ stands for the oracle {v f B* 1 S(n, y, A) = I}. In particular, if Q

is in 9, then the description (x,4) H Dj(R(x,A),b’~) is in 9, too.

It is easy to verify that all the classes considered in the previous section are poly-

nomial complexity classes. In the next theorem we assume the classes N, 9’? .A’ and

A’ to be polynomial complexity classes.

Theorem 17. If u superunicersum 9’” satis-es (a’) and (b’) then Y- sutisjies (a)

and (b) for solve oracle H.

6. When the universum method cannot be used

We say that the universum method can be applied to prove that there exists an oracle

A such that X” 6 YA and AA <MA if there exists a supenmiversum V such that

(a’) and (b’) are true. In this section we present two theorems that cannot be proven

by the universum method. We omit their proofs, which can be found in [l 11.

Theorem 18 (Ker-I Ko [9]). There exists an oracle A such that

p = Np # PSPACEA.

Theorem 19 (Rackoff [13]). There exists an oracle rl such that

p # RA = PSPACEA.

In fact, we can prove that the following corollaries of Theorems 18 and 19 cannot

be proven by the universum method.

A. A. Mwhnik. N. K. Vrreshchayin I Tlvzorrtical Conzputcv Sciww I57 11996) 227-258 257

Corollary 20. There exists an oracle A such that

NPA = Co-NPA # PSPACEA

Corollary 21. Thwr exists an oruclr A such that

PA # PSPACEA and Co-NP c R”.

Both Theorems 18 and 19 can be proven by a method that may be called “coding

method” because, in those proofs, some difficult-to-compute information is encoded via

oracle values, to ensure the truth of positive assertion (,U” < ./1 “‘). To prove Theo-

rem 18, one needs a lower bound by [7, 161 on complexity of computation of PARITY

function by means of AND,OR-circuits of bounded depth, which has a rather compli-

cated proof. Theorem 19 was proved in [131 (in fact, the weaker assertion that P #

R = NP under some oracle was proved there but the proof holds good also for our

case).

Theorem 22. The uniwrsum method cunnot be upplird to prow Corollur>, 20. i.e.,

there exists no superuniversum Y‘ such thut (a’) c~nu’ (b’) arr true JOr 3” = PSPACE,

LF = NP anrt N = Co-NP. i 1~’ = NP.

Theorem 23. Corollury 21 cunnot bc proven bJ> the uniarrsum method, i.e., thrrc

exists no superuniuersum I“ such that (a’) and (b’) hold,for .X = PSPACE, J!’ = P

und // = Co-NP, I’ = R.

Acknowledgements

The authors would like to thank Alexander Razborov and Alexander Shen for helpful

comments and anonymous referee for many corrections.

References

[I] T. Baker. J. Gill and R. Solovay, Relatiwzation of P=?NP question, SIAM J. Compur. 4(4) (1975)

43 1442.

[2] M. Blum and R. Impagliazzo, General oracle and oracle classes, in: Prw. 28th Ann. IEEE SIW/I. OFI

FounduiLlriou of’ Comput. Sci. (1987) I 1% 126.

[3] S. Fenner. L. Fortnow, S.A. Kurtz and L. Li, An oracle builder‘s toolkit, in: Proc. Hfh Am?. Co/r/. cm

Struc/ure 61 CornplrsirJ~ Theoty, (May 1993) 120&l 3 I.
[4] L. Fortnow and J. Rogers, Separability and one-way functions, Manuscript. 1994.

[5] J. Grollman and A. L. Selman, Complexity measures for public-key cryptosystems, SIAM J. C‘omprcr.

17 (1988) 309-335.

[6] J. Hartmanis and N. Immerman, On complete problems for NP nCo-NP, in: Internurionul Co//oqui~~m

on Autonzuta, Lanyuages and Programminy IYK5, Lecture Notes in Computer Sclence. Vol. 194
(Springer, Berlin, 1985).

258 A. A. Muchnik, N. K. Vereshchagin I Theoretical Computer Science 157 (1996) 227-258

[7] J. Hastad, Almost optimal lower bounds for small depth circuits, in: S. Micali, ed., Advances in

Computer Research, 1989, Vol. 5: Randomness and Computation (JAI Press, Greenwich, CT); see

also Computational Limitations for Small Depth Circuits (MIT Press, Cambridge, MA, 1986).

[S] R. Impagliazzo and M. Naor, Decision trees and downward closures, in: Proc. 3rd Canf on Structure

in Complexity Theory (1988) 29-38.

[9] Ker-I Ko, Relativized polynomial-time hierarchies having exactly k levels, SIAM J. Comput. 18 (1989)

392-408.

[lo] C. Lautemann, BPP and the polynomial hierarchy, Injarm. Process. Lett. 17 (1983) 215-217.

[l l] An.A. Muchnik and N.K. Vereshchagin, A general method to construct oracles realizing given

relationships between complexity classes, Tech. Report 500, University of Rochester, 1994.

[12] N. Nisan, Probabilistic versus deterministic decision trees and CREW PRAM complexity, in: Proc.

21th Ann. ACM Symp. on Theory of Computing (1989) 327-335.

[13] C. Rackoff, Relativized Questions Involving Probabilistic Algorithms, in: Proc. ZUth Ann. ACM Symp.

on Theory oj Computing (1978) 338-342. J. ACM 29 (1982) 261-268.

[14] M. Sipser, On relativizations and the existence of complete sets, in: Internat. Colloq. on Automata,

Languages and Programming 1982, Lecture Notes in Computer Science, Vol. 140 (Springer, Berlin

1982) 523-53 I.
[151 M. Sipser, A complexity theoretic approach for randomness, in: Proc. 15th Annual ACM Symp. an

Theory oj Computing (1983) 330-335.

[16] A.C. Yao, Separating the polynomial-time hierarchy by oracles, in: Proc. 26th Ann. IEEE Symp. on

Foundations oj Comput. Sci. (1985) l-10.

