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Computable positive series
(w.l.0.g., members of series are of the form 277)
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Computable positive series
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Computable positive series

Theorem 1.
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Series computably approximated from below
(enumerable series)

Definition
v(x) is enumerable series iff 3 computable function v(x,t) > 0
Ve v(x) = Iim v(x,t)
t—00
Ve, t v(z,t+1) > v(x,t)
vVt {x |v(x,t) # 0} is finite

Theorem 2 (Levin).

Ju@) Y p@) <1 & VV(x)(Z v(z) <1 = 3ACVz pu(x) > v(x) - 2_0)

This p is unique up to a multiplicative constant



Series computably approximated from below

Theorem 2 (Levin).

u(2) - Y p) <1 & Ww@)(Xr@ <1 = 3CVa u) > v(@) - 27°)

Fact 1.
All computable enumerations of enumerable series are m-reducible
to some universal computable enumeration n — vp,.

Fact II.
Each enumerable series v can be effectively transformed
into an enumerable series v/ such that

> () <1,
Sv(z) L1 = Ve (z) = v(a).

p(z) =3 27 "vy(z)



Bounds for u

Theorem 3. (cf. Marandjian)
For any partial computable function ~

3C Ve € Dom(y) pu(z) <~(x) = VeeDom(y) ~v(z) =2~

T heorem 4.
There exists a computable series o such that

Vz a(z) < plz),
3z a(x) = u(x).

Obviously, Theorem 4 implies Theorem 1.



Proof of Theorem 4
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Proof of Theorem 4

B(x) =27" | Bag) =27"
p(zl) >27°




Proof of Theorem 4

B(z}) =27
p(zl) >27°
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Proof of Theorem 4

{x : u(x) < B(x)} is infinite

3 is computable
2 B(x) < Loplx) + ;2_" <1+1
eV p(x) > B(x)2~¢

{z :p(z) < B(x)27°} is empty

3d € [0, c]

{x : p(x) < ﬁ(a:)Q_d} is infinite
{x : u(x) < ﬁ(w)Q_(d_H)} is finite
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Proof of Theorem 4

3% pu(z) = B(x)274

vr u(z) > B(x)27¢

a(z) = min{u(z), B(z)2~%
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Bounds for u

Theorem 5.
For any computable series a(x)

Ve a(z) < plz), Iz alr) = p(z)

J
the set S ={z: a(x) < u(x)} is hypersimple

(An enumerable set S with infinite complement is hypersimple
if for any computable sequence 0 < j1 < jo < ...
there exists k such that [jg, jx+1) C S.)
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Proof of Theorem 5

Y alx)<1/4 | | S a(x) < 272m

| | ] |
Bla) =a(z)  Bla)=a(z) -2  Bz) = al) B(z) = a(z) - 2"

B is computable
S 8(@) < Cpoalr) + 3,272 2m < Y () + 3,27 <141
deVx p(x) > B(x)2™¢

The whole segment corresponding to m = ¢ is included in S.
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Descriptive complexity

Plain entropy (Kolmogorov, 1965) KS is the minimal length
of a code word with respect to an optimal coding.

A coding is called prefix if no code word is a beginning
of any other code word. (Useful for dividing a message flow.)

Prefix entropy (Levin, 1970) KP is the minimal length
of a code word with respect to an optimal prefix coding.
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Plain entropy

T heorem.

T here exists a computable function f such that
Ve f(x)> KS(x),
3z f(x) = KS(x).

(f(z) = loga(z) + O(1))

T heorem 6.
For any computable function f

Ve f(x) > KS(x), 3z f(z) = KS(x)

Y
the set S={z: f(x) > KS(x)} is simple
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Prefix entropy

Theorem (Levin).
KP(z) = —1092 u(z) + O(1)

Theorem 7 (Solovay).

There exists a computable function f such that
Ve f(x) > KP(x),
3z f(x) = KP(x).

Theorem 8 (Solovay).
For any computable function f

Ve f(x) > KP(x), 3%z f(x) = KP(x)

Y
the set S={z: f(x) > KP(x)} is hypersimple
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