A. ÁLVAREZ Universidad de Extremadura Badajoz, Spain aalarma@unex.es

C. SANCHO Universidad de Salamanca Salamanca, Spain mplu@usal.es

P. SANCHO Universidad de Extremadura Badajoz, Spain sancho@unex.es

Reynolds Operator

Let k be a commutative ring with unit. A k-module E can be considered as a functor of k-modules over the category of commutative k-algebras, which we will denote by **E**, by defining $\mathbf{E}(B) := E \otimes_k B$. If F and G are functors of k-modules, we will denote by $\mathbf{Hom}_k(F, H)$ the functor of k-modules

 $\mathbf{Hom}_k(F,H)(B) := \mathrm{Hom}_B(F_{|B},H_{|B})$

where $F_{|B}$ is the functor F restricted to the category of commutative B-algebras. The functor $F^* := \operatorname{Hom}_k(F, \mathbf{k})$ is said to be a dual functor. For example, \mathbf{E} , \mathbf{E}^* and $\operatorname{Hom}_k(\mathbf{E}, \mathbf{E}')$ are dual functors (see [A, 1.10]).

An affine k-monoid $G = \operatorname{Spec} A$ can be considered as a functor of monoids over the category of commutative k-algebras: $G^{\cdot}(B) := \operatorname{Hom}_{k-sch}(\operatorname{Spec} B, G)$. A functor of G-modules (respectively of \mathbf{A}^* -modules) is a functor of k-modules endowed with a linear action of G^{\cdot} (respectively of \mathbf{A}^*). In this paper, we prove the following theorem.

Theorem 1. The category of dual functors of G-modules is equivalent to the category of dual functors of \mathbf{A}^* -modules.

We prove that an affine k-group $G = \operatorname{Spec} A$ is semisimple if and only if $\mathbf{A}^* = \mathbf{k} \times \mathbf{B}^*$ as functors of k-algebras (and the first projection $A^* \to k$ is an element of A). If G is semisimple there exists an isomorphism $A^* = k \times B^*$ such that the first projection $A^* \to k$ is the unit of A. The linear form $w_G := (1, 0) \in k \times B^* = A^*$, which will be referred to as the *invariant integral* of G. We prove the following theorem.

Theorem 2. Let G = Spec A be a semisimple k-group and let $w_G \in A^*$ be the invariant integral of G. Let F be a dual functor of G-modules. It holds that:

- 1. $F^G = w_G \cdot F$.
- 2. F splits uniquely as a direct sum of F^G and another subfunctor of G-modules, explicitly

$$F = w_G \cdot F \oplus (1 - w_G) \cdot F$$

We call the projection $F \to F^G = w_G \cdot F$ the Reynolds operator. The previous theorem still holds for any separated functor of \mathbf{A}^* -modules. More generally, for every functor of *G*-modules *H*, we prove that there exists the maximal separated *G*-invariant quotient of *H* and that the dual of this quotient is H^{*G} . Moreover, when *H* is a dual functor, the quotient morphism is the Reynolds operator.

Let R be a G-algebra and let E and V be two RG-modules. In [C] a Reynolds operator is defined on $\text{Hom}_R(E, V)$, generalizing some results of Magid (see [M]). This last result is a particular case of the previous theorem.

In the final example we prove the main results of [F] about generalized Ω -process.

References

- [A] ÁLVAREZ, A., SANCHO, C., SANCHO, P., Algebra schemes and their representations, J. Algebra 296/1 (2006) 110-144.
- [C] CHU, H., HU, S.-J., KANG, M.-C., A variant of the Reynolds operator, Proc. Amer. Math. Soc. 133/10 (2005) 2865-2871.
- [F] FERRER SANTOS, W., RITTATORE, A., Generalizations of Cayley Ω-process, Proc. Amer. Math. Soc. 135/4 (2007) 961-968.
- [M] MAGID, A.R., Picard groups of rings of invariants, J. Pure Appl. Algebra 17 (1980) 305-311.