N. A. VAVILOV

Department of Mathematics and Mechanics, State University of Saint-Petersburg St. Petersburg, Russia nikolai-vavilov@yandex.ru

Calculations in exceptional groups

Let Φ be a reduced irreducible root system, R be a commutative ring with 1. We study the following three closely related groups, associated to (Φ, R) .

- The (simply-connected) Chevalley group $G(\Phi, R)$.
- The (simply-connected) elementary Chevalley group $E(\Phi, R)$.
- The Steinberg group $St(\Phi, R)$.

We set $K_1(\Phi, R) = G(\Phi, R)/E(\Phi, R)$ and denote by $K_2(\Phi, R)$ the kernel of the natural projection $St(\Phi, R) \longrightarrow E(\Phi, R)$. We are mainly interested in the four large exceptional groups of types E_6 , E_7 , E_8 and E_4 .

There are two approaches towards the proof of structure theorems for $G = G(\Phi, R)$: induction on dimension of R (localisation proofs) and induction on rank of Φ (geometric proofs).

Using Bak's method of localisation-completion, A.Bak, R.Hazrat and the author [1], [2] succeeded in finalising results on the nilpotent structure of $K_1(\Phi, R)$. For example, (apart from the known exceptions of rank ≤ 2) we characterised $E(\Phi, R)$ as the unique largest perfect subgroup of $G(\Phi, R)$ and, among other things, proved the following results. Recall, that $\delta(R)$ denotes the Bass—Serre dimension of R.

Theorem 1. Assume, that $rk(\Phi) \geq 2$, and $\Phi \neq B_2, G_2$. Then the subgroup $E(\Phi, R, A, B)$ is normal in $G(\Phi, R)$, while $C(\Phi, R, A, B)$ coincides with the transporter $Tran(G(\Phi, R), E(\Phi, R, A, B))$.

Theorem 2. Assume, that $\mathrm{rk}(\Phi) \geq 2$, and $\delta(R) < \infty$. Then the group $\mathrm{K}_1(\Phi, R, I)$ is nilpotent.

However, our main emphasis is on calculations in exceptional groups, based on geometry and combinatorics of minimal modules. We wish to calculate with elements of E_6 , E_7 , E_8 as 27×27 , 56×56 or 248×248 matrices, respectively. Straightforward calculations with such matrices, using equations of degree ≥ 3 immediately run into formidable difficulties.

Developing pivotal ideas of H.Matsumoto and M.Stein, the author, A.Stepanov and E.Plotkin [3] – [5], [11] proposed the first *working* method of such calculations, DECOMPOSITION OF UNIPOTENTS, which only referred to *quadratic* equations on one column or row of a matrix from G.

Recently the author and his students M.Gavrilovich, S.Nikolenko and A.Luzgarev, see, in particular, [6] – [10] developed another amazing geometric approach to the proof of the main structure theorems for $G(\Phi, R)$, proof from the Book aka the A₂-proof, which only refers to *linear* equations on the Lie algebra of G.

In the A₂-proof we look at the stabiliser of a column of a matrix of the form e + x, where x is an element of the corresponding Lie algebra L. In essense what we prove in [7], [8], [10] is the following result.

Theorem 3. Let $z \in G$ and $g = [z, x_{\delta}(1)]$ is non-central. Then there exists a root type unipotent $x = x_{\beta_1}(\xi)x_{\beta_2}(\zeta)$ such that $(xg)_{*\omega} = g_{*\omega}$ and $[x, g] \neq e$.

This easy observation immediately implies many known structure results about Chevalley groups, *including* description of their normal subgroups. We observe that this trick works for Chevalley groups of types E_6 and E_7 in minimal representations [6], not for two arbitrary columns, of course, not even for any two singular columns at distance 1, but for two columns of a root type inipotent at distance 1.

Theorem 4. Let $z \in G$ and $g = [z, x_{\delta}(1)]$ is non-central. Then there exists a root type unipotent $x = x_{\beta_1}(\xi)x_{\beta_2}(\zeta)x_{\beta_3}(\eta)$ such, that $(xg)_{*\lambda} = g_{*\lambda}$, $(xg)_{*\mu} = g_{*\mu}$ for some weights λ, μ at distance 1 and $[x, g] \neq e$.

We state also some other closely related results, such as the main lemma of the A₃-proof, proposed by the author to assault centrality of $K_2(\Phi, R)$ for exceptional groups [6]; a characterisation of the extended Chevalley group of type E₆ over an arbitrary commutative ring, found recently by the author and A.Luzgarev [9]; and finiteness of commutators in elementary generators, established by A.Stepanov and the author.

References

- [1] A. Bak, R. Hazrat, N. Vavilov, Localisation-completion: application to classical-like groups, J. Pure Appl. Algebra (2008) (to appear).
- [2] R. Hazrat, N. Vavilov, K₁ of Chevalley groups are nilpotent, J. Pure Appl. Algebra 179 (2003), 99–116.
- [3] A. Stepanov, N. Vavilov, Decomposition of transvections: a theme with variations, K-Theory 19 (2000), 109–153.
- [4] N. Vavilov, Structure of Chevalley groups over commutative rings, Proc. Conf. Nonassociative algebras and related topics. Hiroshima 1990, World Scientific, London et al., 1991, 219–335.
- [5] N. Vavilov, A third look at weight diagrams, Rendiconti del Seminario Matem. dell'Univ. di Padova **204** (2000), 1–45.
- [6] N. Vavilov, An A₃-proof of structure theorems for Chevalley groups of types E₆ and E₇, Int. J. Algebra Comput. 17 (2007), no. 5&6, 1283–1298.
- [7] N. A. Vavilov, M. R. Gavrilovich, An A₂-proof of the structure theorems for Chevalley groups of types E₆ and E₇, St.-Petersburg Math. J. **16** (2005), no. 4, 649–672.
- [8] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, Structure of Chevalley groups: the Proof from the Book, J. Math. Sci. **330** (2006), pages 36–76.
- [9] N. A. Vavilov, A. Yu. Luzgarev *Normaliser of Chevalley groups of type* E₆, St.-Petersburg Math. J. **19** (2007), no. 5, 35–62.
- [10] N. A. Vavilov, S. I. Nikolenko, An A₂-proof of the structure theorems for Chevalley groups of type F₄, St.-Petersburg Math. J. **20** (2008), no. 2.
- [11] N. Vavilov, E. Plotkin *Chevalley groups over commutative rings*. I. *Elementary calculations*, Acta Applicandae Math. **45** (1996), no. 1, 73–113.