O. Yakimova
Mathematisches Institut, Universität zu Köln
Köln, Germany
yakimova@mpim-bonn.mpg.de

On symmetric invariants of \mathbb{Z}_{2}-degenerations

The author is supported by the RFFR Grant 05-01-00988.
Suppose that G is a simply connected reductive algebraic group defined over an algebraically closed field \mathbb{K} of characteristic zero. Set $\mathfrak{g}=$ Lie G and let r denote the rank of this Lie algebra. Let σ be an involution of \mathfrak{g}. Then it defines a \mathbb{Z}_{2}-grading $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$, where $\mathfrak{g}_{0}:=\mathfrak{g}^{\sigma}$ is a symmetric subalgebra of \mathfrak{g}. The corresponding \mathbb{Z}_{2}-degeneration of \mathfrak{g} is the Lie algebra $\tilde{\mathfrak{g}}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}$, where \mathfrak{g}_{1} is considered as a commutative ideal. It was conjectured by Panyushev that the algebra of symmetric invariants $\mathcal{S}(\widetilde{\mathfrak{g}})^{\widetilde{\mathfrak{g}}}$ is polynomial. The conjecture is true and we will present basic ideas of a proof.

First we need some basic fact concerning semidirect rpoducts and their invariants. Let \mathfrak{q} be an arbitrary Lie algebra and V a space of a finite dimensional representation of \mathfrak{q}. Then one form a semidirect products $\mathfrak{q} \ltimes V$, where V is a commutative ideal. It is possible to define a certain Lie algebra

$$
\hat{\mathfrak{q}}:=\left\{\xi \in \mathfrak{q} \otimes \mathbb{K}\left(V^{*}\right) \mid \xi(x) \in \mathfrak{q}_{x} \text { for all } x \in V^{*}\right\}
$$

over the field $\mathbb{K}\left(V^{*}\right)$, which is a Lie algebra of rational sections for the bundle $\Gamma=\left\{y, \mathfrak{q}_{y}\right\} \subset$ $V^{*} \times \mathfrak{q}$. We need a more precise description (and the existence proof) of this Lie algebra. Let us a choose an arbitrary basis $\eta_{1}, \ldots, \eta_{k}$, where $k=\operatorname{dim} \mathfrak{q}$, of \mathfrak{q}. An element $a_{1} \eta_{1}+\ldots+a_{k} \eta_{n}$ with $a_{i} \in \mathbb{K}\left(V^{*}\right)$ lies in $\hat{\mathfrak{q}}$ if and only if $\sum_{i=1}^{k} a_{i} x \cdot \eta_{i}=0$ for all $x \in V^{*}$. Here $x \cdot \eta_{i}$ is a linear function of \mathfrak{q} given by $x \cdot \eta_{i}(q)=\eta\left(\operatorname{ad}^{*}(q) x\right)$ for each $q \in \mathfrak{q}$. Choosing a basis $\left\{x_{1}, \ldots, x_{p}\right\}$ of V^{*} we get $p=\operatorname{dim} V$ equations defining $\hat{\mathfrak{q}}$ over $\mathbb{K}\left(V^{*}\right)$. Rank of the arising $k \times p$ matrix $M=\left(m_{i j}\right)$ with $m_{i j}=\left[\eta_{i}, x_{j}\right]$ is equal to the codimension of a generic Q orbit on V^{*}. Therefore $\hat{\mathfrak{q}}$ is a linear space (over $\mathbb{K}\left(V^{*}\right)$) of dimension $\operatorname{dim} \mathfrak{q}_{x}$ (with $x \in V^{*}$ generic).

Take any $x \in V^{*}$ and let $\hat{\mathfrak{q}}(x)$ be the image of an obvious "evaluation" homomorphism from $\hat{\mathfrak{q}}$ to \mathfrak{q}_{x}. Set

$$
V_{\mathrm{ns}}^{*}:=\left\{x \in V^{*} \mid \hat{\mathfrak{q}}(x) \neq \mathfrak{q}_{x}\right\} .
$$

Note that if an orbit $Q x \subset V^{*}$ is not of maximal dimension, then $x \in V_{\mathrm{ns}}^{*}$.
Lemma 1. The codimansion of V_{ns}^{*} in V^{*} is at least two.
Set $G_{0}:=G^{\sigma}$. Since G is assumed to be simply connected, G_{0} is connected. Let L denote a generic stabiliser of the action of G_{0} on \mathfrak{g}_{1} and set $\mathfrak{l}:=$ Lie L. Since the action of G_{0} on \mathfrak{g}_{1} is self dual, the group L is reductive. Set $\ell:=\mathrm{rkl}$. For each point $y \in \mathfrak{g}_{i}$ (or in \mathfrak{g}_{i}^{*}) let $\mathfrak{g}_{0, y}$ and $\mathfrak{g}_{1, y}$ denote the stabiliser of y in \mathfrak{g}_{0} and \mathfrak{g}_{1}, respectively. There is a symmetric decomposition $\mathfrak{g}_{y}=\mathfrak{g}_{0, y} \oplus \mathfrak{g}_{1, y}$.
Lemma 2. Let $Y=\mathfrak{g}_{0}^{*} \times\{y\}$ be a subset of $\widetilde{\mathfrak{g}}^{*}$ with $y \in \mathfrak{g}_{1}^{*}$. Then $\mathbb{K}[Y]^{\mathfrak{g}_{1}} \cong \mathbb{K}\left[\mathfrak{g}_{0, y}^{*}\right]$.
Proof. This is a particular case of [2, Lemma 4].
Set $\mathbb{F}:=\mathbb{K}\left(\mathfrak{g}_{1}^{*}\right)^{G_{0}}$. Clearly $\mathbb{F} \subset \mathbb{K}(\widetilde{\mathfrak{g}})^{\widetilde{G}}$. In our case of interest $\mathbb{F}=$ Quot $\mathbb{K}\left[\mathfrak{g}_{1}^{*}\right]^{G_{0}}$. Over the new field \mathbb{F} the action of G_{0} on \mathfrak{g}_{1}^{*} is locally transitive. Therefore Lemma 2 yields the following.

Corollary 1. We have $\mathbb{K}\left[\widetilde{\mathfrak{g}}^{*}\right]^{\widetilde{\mathfrak{g}}} \otimes_{\mathbb{K}\left[\mathfrak{g}_{1}^{*}\right] G_{0}} \mathbb{F} \cong \mathbb{F}\left[\mathfrak{l}^{*}\right]^{L}$ and $\mathbb{K}(\widetilde{\mathfrak{g}})^{\widetilde{G}} \cong \mathbb{K}\left(\mathfrak{g}_{1}^{*}\right)^{G_{0}} \otimes \mathbb{K}\left(\mathfrak{l}^{*}\right)^{L} \cong \mathbb{F}\left(\mathfrak{l}^{*}\right)^{L}$.
Theorem 1. For each \mathbb{Z}_{2}-degeneration $\tilde{\mathfrak{g}}$ of a simple Lie algebra \mathfrak{g}, the algebra $\mathcal{S}(\widetilde{\mathfrak{g}})^{\widetilde{\mathfrak{g}}}$ of symmetric invariants is a Polynomial algebra in r variables.

Sketch of a proof. Choose a set of homogeneous generators $\left\{H_{1}, \ldots, H_{\ell}\right\} \subset \mathbb{F}^{\left[l^{*}\right]}{ }^{L}$. Due to Corollary 1 they can be regarded as rational functions on $\widetilde{\mathfrak{g}}^{*}$. Let $U \subset \mathfrak{g}_{1}^{*}$ be the maximal subset such that all H_{i} are regular on $\mathfrak{g}_{0}^{*} \times U$. The complement $\mathfrak{g}_{1}^{*} \backslash U$ is a union of G_{0}-invariant divisors, i.e., a union of zero sets of G_{0}-invariant regular functions. Therefore, multiplying by dominator, we can make all generators H_{1}, \ldots, H_{ℓ} regular. New functions also form a set of generators of $\mathbb{K}\left[\tilde{\mathfrak{g}}^{*}\right]^{\widetilde{\mathfrak{g}}} \otimes_{\mathbb{K}\left[\mathfrak{g}_{1}^{*}\right]} G_{0} \mathbb{F}$ over the field \mathbb{F}. For that reason we do not change the notation.

For $y \in \mathfrak{g}^{*}$ let

$$
\varphi_{y}: \mathbb{K}\left[\widetilde{\mathfrak{g}}^{*}\right] \rightarrow \mathbb{K}\left[\mathfrak{g}_{0}^{*} \times\{y\}\right]
$$

be the restriction homomorphism. The algebra of invariants $\mathcal{S}(\widetilde{\mathfrak{g}})^{\mathfrak{g}}$ is free if and only if there is a set of generators H_{1}, \ldots, H_{ℓ} such that $\varphi_{y}\left(H_{i}\right)$ are algebraically independent for the elements y of a big open subset of \mathfrak{g}_{1}^{*}.

To verify this we need to check that each G_{0}-invariant divisors $X \subset \mathfrak{g}_{1} *$ contains a point x with $\varphi_{x}\left(H_{i}\right)$ being algebraically independent.

Making use of Lemma 1, this question can be reduced to simpler question concerning a so called degeneration of \mathfrak{l} to $\mathfrak{g}_{0, x}$ with $x \notin\left(\mathfrak{g}_{1}^{*}\right)_{\text {ns }}$.

For several involution Theorem 1 was proved by Panyushev [1]. The last part of our proof is a case by case verification for the remaining ones:

- $\left(E_{6}, F_{4}\right),\left(E_{7}, E_{6} \oplus \mathbb{K}\right),\left(E_{8}, E_{7} \oplus \mathfrak{s l}_{2}\right),\left(E_{6}, \mathfrak{s o}_{10} \oplus \mathbb{K}\right),\left(E_{7}, \mathfrak{s o}_{12} \oplus \mathfrak{s l}_{2}\right)$;
- $\left(\mathfrak{s p}_{2 n+2 m}, \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2 m}\right)$, with $n \geqslant m ;\left(\mathfrak{s o}_{2 n}, \mathfrak{g l}_{n}\right) ;\left(\mathfrak{s l}_{2 n}, \mathfrak{s p}_{2 n}\right)$.

References

[1] D. Panyushev, On the coadjoint representation of \mathbb{Z}_{2}-contractions of reductive Lie algebras, Adv. Math., to appear.
[2] E.B. Vinberg, O.S. Yakimova, Complete families of commuting functions for coisotropic Hamiltonian actions, arXiv:math.SG/0511498.

