O. YAKIMOVA Mathematisches Institut, Universität zu Köln Köln, Germany yakimova@mpim-bonn.mpg.de

On symmetric invariants of \mathbb{Z}_2 -degenerations

The author is supported by the RFFR Grant 05-01-00988.

Suppose that G is a simply connected reductive algebraic group defined over an algebraically closed field \mathbb{K} of characteristic zero. Set $\mathfrak{g} = \text{Lie } G$ and let r denote the rank of this Lie algebra. Let σ be an involution of \mathfrak{g} . Then it defines a \mathbb{Z}_2 -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where $\mathfrak{g}_0 := \mathfrak{g}^{\sigma}$ is a symmetric subalgebra of \mathfrak{g} . The corresponding \mathbb{Z}_2 -degeneration of \mathfrak{g} is the Lie algebra $\tilde{\mathfrak{g}} = \mathfrak{g}_0 \ltimes \mathfrak{g}_1$, where \mathfrak{g}_1 is considered as a commutative ideal. It was conjectured by Panyushev that the algebra of symmetric invariants $\mathcal{S}(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ is polynomial. The conjecture is true and we will present basic ideas of a proof.

First we need some basic fact concerning semidirect rpoducts and their invariants. Let q be an arbitrary Lie algebra and V a space of a finite dimensional representation of q. Then one form a semidirect products $q \ltimes V$, where V is a commutative ideal. It is possible to define a certain Lie algebra

$$\hat{\mathfrak{q}} := \{ \xi \in \mathfrak{q} \otimes \mathbb{K}(V^*) \mid \xi(x) \in \mathfrak{q}_x \text{ for all } x \in V^* \}$$

over the field $\mathbb{K}(V^*)$, which is a Lie algebra of rational sections for the bundle $\Gamma = \{y, \mathfrak{q}_y\} \subset V^* \times \mathfrak{q}$. We need a more precise description (and the existence proof) of this Lie algebra. Let us a choose an arbitrary basis η_1, \ldots, η_k , where $k = \dim \mathfrak{q}$, of \mathfrak{q} . An element $a_1\eta_1 + \ldots + a_k\eta_n$ with $a_i \in \mathbb{K}(V^*)$ lies in $\hat{\mathfrak{q}}$ if and only if $\sum_{i=1}^k a_i x \cdot \eta_i = 0$ for all $x \in V^*$. Here $x \cdot \eta_i$ is a linear function of \mathfrak{q} given by $x \cdot \eta_i(q) = \eta(\operatorname{ad}^*(q)x)$ for each $q \in \mathfrak{q}$. Choosing a basis $\{x_1, \ldots, x_p\}$ of V^* we get $p = \dim V$ equations defining $\hat{\mathfrak{q}}$ over $\mathbb{K}(V^*)$. Rank of the arising $k \times p$ matrix $M = (m_{ij})$ with $m_{ij} = [\eta_i, x_j]$ is equal to the codimension of a generic Q orbit on V^* . Therefore $\hat{\mathfrak{q}}$ is a linear space (over $\mathbb{K}(V^*)$) of dimension dim \mathfrak{q}_x (with $x \in V^*$ generic).

Take any $x \in V^*$ and let $\hat{\mathfrak{q}}(x)$ be the image of an obvious "evaluation" homomorphism from $\hat{\mathfrak{q}}$ to \mathfrak{q}_x . Set

$$V_{\rm ns}^* := \{ x \in V^* \mid \hat{\mathfrak{q}}(x) \neq \mathfrak{q}_x \}.$$

Note that if an orbit $Qx \subset V^*$ is not of maximal dimension, then $x \in V^*_{ns}$.

Lemma 1. The codimension of V_{ns}^* in V^* is at least two.

Set $G_0 := G^{\sigma}$. Since G is assumed to be simply connected, G_0 is connected. Let L denote a generic stabiliser of the action of G_0 on \mathfrak{g}_1 and set $\mathfrak{l} := \text{Lie } L$. Since the action of G_0 on \mathfrak{g}_1 is self dual, the group L is reductive. Set $\ell := \text{rk } \mathfrak{l}$. For each point $y \in \mathfrak{g}_i$ (or in \mathfrak{g}_i^*) let $\mathfrak{g}_{0,y}$ and $\mathfrak{g}_{1,y}$ denote the stabiliser of y in \mathfrak{g}_0 and \mathfrak{g}_1 , respectively. There is a symmetric decomposition $\mathfrak{g}_y = \mathfrak{g}_{0,y} \oplus \mathfrak{g}_{1,y}$.

Lemma 2. Let $Y = \mathfrak{g}_0^* \times \{y\}$ be a subset of $\widetilde{\mathfrak{g}}^*$ with $y \in \mathfrak{g}_1^*$. Then $\mathbb{K}[Y]^{\mathfrak{g}_1} \cong \mathbb{K}[\mathfrak{g}_{0,y}^*]$.

Proof. This is a particular case of [2, Lemma 4].

Set $\mathbb{F} := \mathbb{K}(\mathfrak{g}_1^*)^{G_0}$. Clearly $\mathbb{F} \subset \mathbb{K}(\widetilde{\mathfrak{g}})^{\widetilde{G}}$. In our case of interest $\mathbb{F} = \operatorname{Quot} \mathbb{K}[\mathfrak{g}_1^*]^{G_0}$. Over the new field \mathbb{F} the action of G_0 on \mathfrak{g}_1^* is locally transitive. Therefore Lemma 2 yields the following.

Corollary 1. We have
$$\mathbb{K}[\tilde{\mathfrak{g}}^*]^{\tilde{\mathfrak{g}}} \otimes_{\mathbb{K}[\mathfrak{g}_1^*]^{G_0}} \mathbb{F} \cong \mathbb{F}[\mathfrak{l}^*]^L$$
 and $\mathbb{K}(\tilde{\mathfrak{g}})^{\tilde{G}} \cong \mathbb{K}(\mathfrak{g}_1^*)^{G_0} \otimes \mathbb{K}(\mathfrak{l}^*)^L \cong \mathbb{F}(\mathfrak{l}^*)^L$.

Theorem 1. For each \mathbb{Z}_2 -degeneration $\tilde{\mathfrak{g}}$ of a simple Lie algebra \mathfrak{g} , the algebra $\mathcal{S}(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ of symmetric invariants is a Polynomial algebra in r variables.

Sketch of a proof. Choose a set of homogeneous generators $\{H_1, \ldots, H_\ell\} \subset \mathbb{F}[\mathfrak{l}^*]^L$. Due to Corollary 1 they can be regarded as rational functions on $\tilde{\mathfrak{g}}^*$. Let $U \subset \mathfrak{g}_1^*$ be the maximal subset such that all H_i are regular on $\mathfrak{g}_0^* \times U$. The complement $\mathfrak{g}_1^* \setminus U$ is a union of G_0 -invariant divisors, i.e., a union of zero sets of G_0 -invariant regular functions. Therefore, multiplying by dominator, we can make all generators H_1, \ldots, H_ℓ regular. New functions also form a set of generators of $\mathbb{K}[\tilde{\mathfrak{g}}^*]^{\tilde{\mathfrak{g}}} \otimes_{\mathbb{K}[\mathfrak{g}_1^*]^{G_0}} \mathbb{F}$ over the field \mathbb{F} . For that reason we do not change the notation.

For $y \in \mathfrak{g}^*$ let

$$\varphi_y: \mathbb{K}[\widetilde{\mathfrak{g}}^*] \to \mathbb{K}[\mathfrak{g}_0^* \times \{y\}]$$

be the restriction homomorphism. The algebra of invariants $S(\tilde{\mathfrak{g}})^{\tilde{\mathfrak{g}}}$ is free if and only if there is a set of generators H_1, \ldots, H_ℓ such that $\varphi_y(H_i)$ are algebraically independent for the elements y of a big open subset of \mathfrak{g}_1^* .

To verify this we need to check that each G_0 -invariant divisors $X \subset \mathfrak{g}_1^*$ contains a point x with $\varphi_x(H_i)$ being algebraically independent.

Making use of Lemma 1, this question can be reduced to simpler question concerning a so called *degeneration* of \mathfrak{l} to $\mathfrak{g}_{0,x}$ with $x \notin (\mathfrak{g}_1^*)_{ns}$.

For several involution Theorem 1 was proved by Panyushev [1]. The last part of our proof is a case by case verification for the remaining ones:

- $(E_6, F_4), (E_7, E_6 \oplus \mathbb{K}), (E_8, E_7 \oplus \mathfrak{sl}_2), (E_6, \mathfrak{so}_{10} \oplus \mathbb{K}), (E_7, \mathfrak{so}_{12} \oplus \mathfrak{sl}_2);$
- $(\mathfrak{sp}_{2n+2m},\mathfrak{sp}_{2n}\oplus\mathfrak{sp}_{2m})$, with $n \ge m$; $(\mathfrak{so}_{2n},\mathfrak{gl}_n)$; $(\mathfrak{sl}_{2n},\mathfrak{sp}_{2n})$.

References

- [1] D. PANYUSHEV, On the coadjoint representation of Z₂-contractions of reductive Lie algebras, Adv. Math., to appear.
- [2] E.B. VINBERG, O.S. YAKIMOVA, Complete families of commuting functions for coisotropic Hamiltonian actions, arXiv:math.SG/0511498.