The Summer School

"Contemporary Mathematics" EMBLEMA

Russia, Dubna, 18-29 july 2008

About us   Scientific program   Our professors  

Scientific program

Lecturer Title Lectures Seminars
D. AnosovElements of probability theory from axioms to randoms walks.14
I. ArzhantsevQuiver represententions and matrix problems 4
V. ArnoldContinued fractions of square roots of integer numbers24
Yu. BurmanInfinte bases 3
A. Bufetov, A. VashenkoMartin Boundary for the Young graph 4
N. Dolbilin A. Alexandrov's uniqueness theorem on convex polytops.1 
A. Kanel-BelovWord's combinatorics and symbolic dynamics. 4
V. BykovskiiYa. Uspensky's involution11
A. VershikAnd what will take place if n is too big?21
E. GhysOsculating curves.12
D. ZvonkineFrom statistical physics to mathematical problems. 4
M. KazaryanTropical and arctic geometry. 4
V. KleptsynDiscrete complex analysis and lattice models. 4
Yu. KudryashovBilliards and drums. 4
S. LandoUmbral calculus. 2
N. MoshevitinFarey Series. 4
S. Novikov Discrete complex analysis and the Lobachevsky plane. 1 
I. PaninVoevodsky's methods. 4
G. PaninaLinkages, colored graphs and polyhedra turned inside out.  4
Yu. PritykinWhat is P vs. NP problem? 4
V. ProtassovVisual theory of extremum. 4
A. RaigorodskyModels of random graphs. 3
A. RaigorodskyColoring of graphs and topology. 1
M. RaskinIntroduction to the game theory. 4
A. SkopenkovAlgebraic topology from the geometrical point of view. 4
M. SkopenkovRamsey theory of links. 4
E. SmirnovCoxeter groups and regular polyhedra. 4
A. SossinskyThe theory of knots.12
V. TihomirovMathematics and laws of the nature.1 
V. UspenskyComputable real numbers and their enumerations.1 
V. UspenskyLeech lattice or On a road towards the Monster. 3
V. UspenskyTransfinite induction. 1
A. Ustinov On the solutions of two Arnold's problems . 3
G. ShabatPlanar curves. 4
I. Yashenko Compacts and compactness. 11

Copyright 2007—..., MCCME

Rambler's Top100