Математическое образование: вчера, сегодня, завтра… |
||
6. Статистика первых цифр степеней двойки и передел мира
Первая цифра числа 2n бывает единицей примерно в 6 раз чаще, чем девяткой. Так же распределены первые цифры населения и площади стран мира. (Я предполагаю, что и первые цифры, скажем, численностей или капиталов компаний подчиняются тому же распределению, но не располагаю нужными для проверки данными).
Предлагаемое ниже объяснение превращается в теорему при фиксации простейшей жесткой модели (такие теоремы можно, по-видимому, доказать и для широкого класса других жестких моделей, так что вся теория, видимо, оправдывается и при мягком моделировании).
Последовательность
первых цифр первых чисел 2n
(n = 0, 1, 2,...):
Этот результат следует из теоремы Г. Вейля (доказанной около ста лет назад), согласно которой последовательность дробных долей {nx} чисел nx, где x иррационально, равномерно распределена на отрезке от 0 до 1. (Дробная доля числа a -- это разность {a} = a - [a] между a и наибольшим целым числом [a], не превосходящим a).
Рис. 12. К теореме Вейля. |
Теорема Вейля означает, что если точка прыгает по окружности длины 1 шагами, несоизмеримыми с ее длиной (рис. 12), то доля времени, проводимого прыгающей точкой в каждой дуге, пропорциональна длине дуги (и не зависит от расположения дуги на окружности).
Первая цифра i числа определяется тем, в какой из отрезков между точками lg i и lg(i + 1) попадает дробная часть (мантисса) его логарифма (здесь и далее логарифмы десятичные).
Поскольку lg2n=nlg2,
а число x= lg2 иррационально,
теорема Вейля доставляет
равномерное распределение точек {lg2n}
на отрезке от 0 до 1. Следовательно,
доля чисел 2n, имеющих
первой цифрой десятичного
разложения i, составляет длину pi
отрезка от lg i до lg(i + 1). Мы
получаем таким образом следующую
статистику первых цифр чисел 2n
(в процентах):
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
100pi | 30 | 17 | 12 | 10 | 8 | 7 | 6 | 5 | 5 |
Например, доля единиц составляет p1=lg2» 0,30103..., что
примерно в 6 раз больше доли
девяток.
Такое же распределение имеют первые цифры членов любой геометрической прогрессии (например, 3n). Исключение составляют, конечно, прогрессии 10n, ()n, и вообще прогрессии со знаменателями 10p/q, где p и q целые.
Лет двадцать назад Н.Н. Константинов обратил мое внимание на то, что первые цифры населения стран мира подчиняются тому же странному распределению: единиц примерно вшестеро больше, чем девяток. Вот мое тогдашнее объяснение этого явления. Рассмотрим последовательность, образованную численностями населения фиксированной страны в последовательные годы. Согласно теории Мальтуса, эти числа образуют геометрическую прогрессию. Согласно теореме Вейля, первые цифры распределены так же как первые цифры степеней двойки. Перейдем теперь к статистике населения разных стран в один и тот же год. Согласно "эргодическому принципу" временные средние можно заметить пространственными: статистика первых цифр должна оказаться такой же, как для одной страны.
(Эргодический принцип -- то же самое соображение, согласно которому для исследования эволюции дерева в лесу нет необходимости ждать, когда оно вырастет из семени и умрет, а можно просто посмотреть на деревья разных возрастов. Здесь мы применили этот принцип в обратную сторону, вычисляя статистику по странам на основании знаний об эволюции одной страны.)
Для контроля я сравнил числа страниц в книгах на полке в моей библиотеке, длины рек и высоты гор. Во всех этих случаях доли единиц и доли девяток среди первых цифр полученных чисел оказались близкими. Книги, горы и реки не растут в геометрической прогрессии, теория Мальтуса к ним неприменима. Поэтому различие статистик первых цифр в числах, выражающих численности населения и, скажем, длины рек, служат своеобразным подтверждением формулы Мальтуса (согласно которой население либо растет в геометрической прогрессии, либо убывает, как мы это сейчас наблюдаем в России).
Однако лет десять назад М.Б. Севрюк обнаружил, что не только
население, но и площади стран мира подчиняются такому же странному
закону распределения первых цифр,
как степени двойки1. К площадям теория
Мальтуса, по-видимому, неприменима, так что возникает вопрос -- как
объяснить это поведение площадей:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
100pi | 29 | 21 | 10 | 11 | 6 | 6 | 8 | 3 | 6 |
Оказывается, целый ряд моделей передела мира приводит именно к
такому распределению. Простейшая модель (для которой установление
указанного распределения -- теорема) такова: за единицу времени
страна с вероятностью 50% делится пополам, а с вероятностью
50% объединяется с другой страной такой же площади.
Эта жесткая модель допускает точное математическое исследование, показывающее, что доля времени, в течение которого первая цифра площади страны будет единицей (соответственно, i) составляет lg2»0,3... (соответственно, lg(i+1)-lg i).
Компьютерные эксперименты (проведенные М. В. Хесиной в Торонто и Ф. Аикарди в Триесте летом 1997 года) показывают, что такое же распределение устанавливается в большом числе других моделей. Например, можно предположить, что за единицу времени любая из стран (с площадями xk и xl) с вероятностью 1/2 объединяется со случайно выбранной другой (образуя страну площади xk+xl), а с вероятностью половина делится на две равные части.
Начиная с сотни стран площадей, скажем, xk=k, можно уже через сотню шагов получить хорошее приближение к нашему стандартному распределению.
Деление на равные части можно заменить делением на части площадей pxk и (1-p)xk (Квебек, Украина,...), вероятности объединения и деления можно сделать различными -- результаты численного эксперимента малочувствительны к этим изменениям модели. Можно даже ввести в рассмотрение географическое положение стран, разрешив объединение лишь с соседями (пренебрегая существованием в свое время Восточной Пруссии, а ныне -- Калининградской области). Численные эксперименты приводят к тому же распределению (будем ли мы моделировать географию земного шара окружностью, или сферой, отрезком или прямоугольником).
Таким образом, наше распределение является, по-видимому, свойством мягкой модели, но доказательство того, что оно устанавливается в ее конкретных реализациях в виде жестких моделей -- трудная и далеко не решенная математическая задача.
Математика, подобно физике, -- экспериментальная наука, отличающаяся от физики лишь тем, что в математике эксперименты очень дешевы. Видимо, именно поэтому бюджет отделения математики в РАН в сорок раз меньше бюджета физических отделений (а, следовательно, производительность наших математиков в соответствующее число раз выше).
1Это распределение может показаться менее странным, если заметить, что это -- единственное распределение, не зависящее от того, в каких единицах распределяются площади (будь то квадратные километры, квадратные мили, квадратные футы, квадратные дюймы и т. д.)