Н. М. Курносов и И. А. Яковлев планируют провести 3-4 занятия.
Доступны 4 видеозаписи курса.
Доступны задачи к курсу (листок 1 и листок 2), рукописный конспект 2 лекций и картинка.
В 1799 году двадцатидвухлетний математик Карл Фридрих Гаусс опубликовал свою диссертацию. В ней он предложил «первое строгое доказательство» Основной Теоремы Алгебры (точнее показал, что каждый вещественный многочлен раскладывается в произведение многочленов степени один и два). Это утверждение было известно в качестве гипотезы на протяжении двухсот лет, а во второй половине восемнадцатого века было изобретено несколько идей его доказательства. Все они содержали пробелы, разбор которых занимает больше половины небольшого текста [G].
В наше время легко понять, почему крупнейшим математикам того времени не удавалось полностью доказать ОТА. Любое такое доказательство должно содержать топологическую аргументацию, недоступную вплоть до появления работ Коши. Создание топологии в девятнадцатом веке позволило легко формализовать различные идеи доказательства, и теперь их понимание доступно любому младшекурснику (см. обзор в [ТУ]). В нашем курсе мы хотим познакомить слушателей с аргументом из [G] (точнее, с современной его реконструкцией [S]). Он не является самым прямым или простым доказательством ОТА. Однако, этот путь позволит нам познакомится с несколькими красивыми разделам топологии и геометрии.
Гаусс воспользовался нестандартным для своего времени геометрическим взглядом на комплексные числа и представил ОТА как утверждение о пересечении двух вещественных алгебраических кривых. Алгебраическая кривая это множество нулей многочлена от двух переменных. Гаусс использует без доказательства нетривиальные утверждения о кривых на плоскости. Чтобы заполнить его пробелы достаточно элементарных рассуждений (см. например [SV]), мы же попробуем продвинуться дальше, и обсудим алгебраические кривые с разных точек зрения.
Этот курс был вдохновлён прекрасной книгой Этьена Жиса [Ж] (см. главы 5-9 и 11). Хочется порекомендовать ее всем участникам школы вне зависимости от посещения данного курса.