МЦНМО  
МОСКОВСКИЙ  ЦЕНТР НЕПРЕРЫВНОГО  МАТЕМАТИЧЕСКОГО  ОБРАЗОВАНИЯ

НЕЗАВИСИМЫЙ МОСКОВСКИЙ УНИВЕРСИТЕТ


На главную страницу МЦНМО-НМУ
К текущим докладам

Общий семинар Независимого Московского университета «Глобус» (MCCME-IUM general seminar «Globus»)

English edition of colloquium talks for students (a predecessor of Globus seminar)

Видео на Math-Net.Ru

Свободно распространяемые ИЗДАНИЯ семинара

Abstracts (and sometimes notes) of previous talks:

Spring 2000 Fall 2000 Spring 2001 Fall 2001
Spring 2002 Fall 2002 Spring 2003 Fall 2003
Spring 2004 Fall 2004 Spring 2005 Fall 2005
Spring 2006 Fall 2006 Spring 2007 Fall 2007
Spring 2008 Fall 2008 Spring 2009 Fall 2009
Spring 2010 Fall 2010 Spring 2011 Fall 2011
Spring 2012 Fall 2012 Spring 2013 Fall 2013
Spring 2014

Цель семинара: восстановить единство математики — мы должны (стремиться) понимать, что делают наши коллеги.

Семинар проходит (как правило) раз в две недели по четвергам в 15.40 в конференц-зале.

Приглашаются все интересующиеся математикой.


Бюро семинара:


Talks (2024)


Talks (2023)


Talks (Spring 2019)


Talks (Fall 2018)


Talks (Spring 2018)


Talks (Fall 2017)


Talks (Spring 2017)


Talks (Fall 2016)


Talks (Spring 2016)


Talks (Fall 2015)


Talks (Spring 2015)


Talks (Fall 2014)



26 сентября 2024

Владлен Анатольевич Тиморин

Полиномиально-подобная ренормализация

В 15:40, ОЧНО в 401 и транслируются на YouTube

Вопросы докладчику можно будет задать через Zoom (Идентификатор конференции: 844 0893 0505 Код доступа: 166462)

Аннотация:

С одной стороны, даже самые примитивные (с точки зрения алгебры) нелинейные многочлены, такие, как f(z)=z^2+c, демонстрируют бесконечно тонкие и интересные явления при итерациях. Но, с другой стороны, обнаруженные в простейших нелинейных системах паттерны повторяются во многих других, более сложных системах (универсальность). Примеры: универсальность Фейгенбаума, возникающая в каскадах удвоения периода; появление множества Мандельброта в плоскостях параметров общего вида аналитических систем, аналитически зависящих от параметра (в том числе, уменьшенные копии множества Мандельброта в самом множестве Мандельброта). Объяснение этим явлениям содержится в концепции ренормализации. Комплексно-аналитический подход к ренормализации, предложенный Дуади и Хаббардом 1985, опирается на понятие полиномиально-подобного отображения. Мы обсудим это понятие – одно из центральных в комплексной динамике – и некоторые его приложения, в том числе относительно недавние.

30 мая 2024

Сергей Константинович Ландо

Весовые системы, связанные с алгебрами Ли

В 15:40, ОЧНО в 401 и транслируются на YouTube

Вопросы докладчику можно будет задать через Zoom (Идентификатор конференции: 831 8219 6932; Код доступа: ium)

Аннотация:


11 апреля 2024

Михаил Анатольевич Цфасман

Конфигурации квадратичных вычетов, алгебраические кривые и поверхность типа К3

(памяти Л.В. Гончаровой, по совместной работе с В. Кириченко, С. Влэдуцем и И. Захаревичем)

В 15:40, ОЧНО в 401 и транслируются на YouTube

Вопросы докладчику можно будет задать через Zoom

Аннотация:

Есть особое очарование у математических задач, которые элементарно формулируются, не поддаются элементарному решению, и продвижение в которых достигается привлечением сложных областей современной математики. Особенно часто такие задачи встречаются в теории чисел.

Распределение квадратичных вычетов по модулю простого числа изучается с конца 19 века. Я начну с краткого введения для тех, кто об этом совсем ничего не знает. Засим последуют две части. В первой мы рассмотрим классическую задачу о наборах последовательных квадратичных вычетов. Сводя эту задачу к задаче подсчета точек на эллиптических и гиперэллиптических кривых, мы получаем результаты, недоступные классическим методам. Во второй части я сформулирую последний неопубликованный результат Лидии Гончаровой о наборах вычетов, разности между которыми являются квадратичными вычетами. Нам так и не удалось воспроизвести её доказательство, но удалось доказать её теорему, сведя задачу к подсчету точек на одной весьма специальной поверхности типа К3.

Цель рассказа – еще раз показать, насколько полезна может быть алгебраическая геометрия в её применении к теории чисел.


21 марта 2024

Александра Сергеевна Скрипченко

Задача Новикова: как игра на бильярде помогает в физике металлов

В 15:40, ОЧНО в 401 и транслируются на YouTube

Вопросы докладчику можно будет задать через Zoom ( Идентификатор конференции: 891 0064 1387
Код доступа: ium )

Аннотация:

Я расскажу историю одной задачи, которую С. П. Новиков сформулировал в 1982 году в связи с изучением полуклассического движения электрона в кристаллической решетке. Речь идет об асимптотическом поведении сечений 3-периодической поверхности плоскостями заданного направления.

Эта задача сначала представлялась топологической, а впоследствии оказалась тесно связанной со многими важными вопросами из теории динамических систем (прежде всего, с тейхмюллеровой динамикой) и геометрической теории групп (автоморфизмами свободных групп и действиями групп на 𝑅-деревьях). Мы поговорим об этих связях, а еще - о классических и свежих результатах и пока недоказанных гипотезах.


7 марта 2024

Лев Дмитриевич Беклемишев

Топологическая интерпретация логики доказуемости

В 15:40, ОЧНО в 401 и транслируются на YouTube

Вопросы докладчику можно будет задать через и в Zoom ( Идентификатор конференции: 824 5306 8196
Код доступа: ium )

Аннотация:

В докладе будет рассказано о топологической интерпретации логики доказуемости и недавних продвижениях и открытых вопросах в этой области. В основе подхода лежит неожиданная аналогия между логическим высказыванием, выражающем непротиворечивость теории, и операцией топологической производной (переходом от множества к множеству его предельных точек) в классе разреженных топологических пространств. Все необходимые термины (логика доказуемости, разреженные топологические пространства и т.д.) будут определены в докладе.

1 июня 2023

Ирина Михайловна Парамонова

Юбилейный доклад

В 15:40, ОЧНО в 401 и транслируются на YouTube

Вопросы докладчику можно будет задать через Zoom (Идентификатор конференции: 849 4308 4692, Код доступа: ium)

Аннотация:

Доклад будет состоять из двух частей.

Первая часть будет посвящена методу орбит, появившемуся в 1962 году в работе А.А.Кириллова. Устанавливая связь между таким сложным объектом, как пространство неприводимых унитарных представлений группы Ли G, и гораздо более простым объектом – пространством орбит группы G в коприсоединенном представлении, метод орбит часто подсказывает простые и геометрически наглядные ответы на основные вопросы теории представлений. Я расскажу, как метод орбит работает в задачах ограничения и индуцирования для разрешимых групп Ли.

Вторая часть будет посвящена классификации простых бесконечномерных супералгебр Ли векторных полей.

Все специальные термины будут в докладе объяснены.

Видеозапись доклада


18 мая 2023

Александр Александрович Гайфуллин

Триангуляции многообразий, похожих на проективные плоскости

В 15:40, ОЧНО в 401 и транслируются на YouTube

Аннотация:

В 1987 году Брем и Кюнель доказали следующую оценку: всякая комбинаторная триангуляция отличного от сферы d-мерного многообразия (без края) должна иметь не менее 3d/2+3 вершин. Более того, наличие у многообразия M, отличного от сферы, триангуляции ровно с 3d/2+3 вершинами накладывает на это многообразие очень жесткие условия. Во-первых, размерность d может быть равна только 2, 4, 8 или 16; во-вторых, M должно допускать (кусочно линейную) функцию Морса ровно с тремя критическими точками. (Илс и Койпер назвали многообразия, удовлетворяющие этим свойствам, многообразиями, похожими на проективные плоскости.) До недавнего времени было известно ровно 5 примеров различных (3d/2+3)-вершинных триангуляций d-мерных многообразий, отличных от сферы:

1) d=2: единственная 6-вершинная триангуляция вещественной проективной плоскости (фактор границы икосаэдра по антиподальной инволюции);

2) d=4: единственная 9-вершинная триангуляция комплексной проективной плоскости (Кюнель, 1983);

3) d=8: три 15-вершинные триангуляции кватернионной проективной плоскости (построение триангуляций - Брем и Кюнель, 1992; доказательство, что эти триангуляции действительно гомеоморфны кватернионной проективной плоскости - Городков, 2016).

Случай d=16 оставался полностью открытым: не было известно никаких 27-вершинных триангуляций 16-мерных многообразий, отличных от сферы. В докладе я расскажу о построении таких триангуляций. А именно, будет предъявлено четыре таких симплициальных многообразия с группой симметрий порядка 351 и на их основе построено очень много (более 10^{103}) таких симплициальных многообразий с меньшими группами симметрий. Слово "предъявлено" означает следующее. Четыре симплициальных многообразия с группой симметрий порядка 351 были найдены при помощи специального компьютерного алгоритма и ответом для каждой из них является список из 286 орбит 16-мерных симплексов.

Естественная гипотеза состоит в том, что все построенные симплициальные многообразия кусочно линейно гомеоморфны октавной проективной плоскости. Однако попытки доказательства этой гипотезы упираются в необходимость вычисления второго класса Понтрягина построенных симплициальных многообразий. В настоящее время не известно эффективного способа такого вычисления.

Видеозапись доклада


6 апреля 2023

Александр Геннадьевич Кузнецов

Многообразия дель Пеццо

В 15:40, ОЧНО в 401 и транслируются на YouTube и в Zoom ( Идентификатор конференции: 860 3235 0543; Код доступа: ium)

Аннотация:

Двумерные поверхности степени d в комплексном проективном пространстве той же размерности d называтся поверхностями дель Пеццо и являются классическими объектами алгебраической геометрии. Вначале я расскажу о классификации и удивительных свойствах поверхностей дель Пеццо (эту часть доклада лучше пропустить знакомым с алгебраической геометрией), а потом расскажу о нашей недавней работе с Ю.Прохоровым, посвященной многообразиям дель Пеццо большей размерности.

Видеозапись доклада


26 января 2023

Александр Абрамович Белавин

Великое объединение, теория суперструн, многообразия Калаби-Яу и Теория представлений N = 2 супералгебры Вирасоро

В 15:40, ОЧНО в 401 и в zoom

Аннотация:

10-мерная теория суперструн объединяет Стандартную модель сильного, электромагнитного и слабого взаимодействий и Квантовую гравитацию. Начиная с 10-мерной теории суперструн, мы можем получить 4-мерную теорию с N = 1 пространственно-временной Суперсимметрией, следуя идее Калуцы-Клейна, путем компактификации шести из десяти измерений. По феноменологическим причинам нам нужно сделать это, сохраняя N=1 Суперсимметрию 4-мерного Пространства-Времени. Чтобы достичь этого, как показали Канделас, Горовиц, Стромингер и Виттен, мы должны компактифицировать шесть из десяти измерений на так-называемые многообразия Калаби-Яу. Я расскажу о некоторых интересных свойствах этих многообразий.

Другим эквивалентным подходом к достижению той же цели является компактификация 6 измерений. на $N=2$ Суперконформную теорию поля с центральным зарядом $c=9$, как это было показано Д. Гепнером. Каждый из этих двух эквивалентных подходов имеет свои достоинства. В частности, используя интегрируемость Минимальных моделей N=2 суперконформной теории поля, можно получить явное решение рассматриваемых моделей теории суперструн.

Видеозапись доклада


20 июня 2019

Армен Сергеев

(МИ РАН, МГУ)

От вихрей Гинзбурга-Ландау к уравнениям Зайберга-Виттена

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract.
Доклад состоится в рамках мемориальной мини-конференции памяти Алексея Зыкина.


18 апреля 2019

Александр Кириллов

(Университет Пенсильвании, США & ИППИ РАН)

О представлениях треугольной матричной группы

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


11 апреля 2019

Raimundas Vidunas

(Institute of Applied Mathematics, Vilnius University, Lithuania)

Deformed dessins d'enfants of almost Belyi maps

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


6 декабря 2018

Yanqi Qiu

(Academy of Mathematical and Systems Sciences, Chinese Academy of Sciences)

Palm equivalence, number rigidity and conditional measures for determinantal point processes

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


15 ноября 2018

Сергей Яковенко

(Weizmann Institute of Science, Israel)

Аналгебраическая геометрия

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


11 октября 2018

Павел Вигман

(ИППИ РАН, Kadanoff Center for Theoretical Physics, University of Chicago)

Квантование двумерной гидродинамики

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


29 июня 2018

Yuval Peres

(Microsoft Research)

Rigidity and Tolerance for Perturbed Lattices

Trace reconstruction for the deletion channel

В 14:40 (!!!) в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аннотации докладов


21 июня 2018

Михаил Цфасман

(ИППИ РАН, НМУ, CNRS)

Многообразия над конечными полями: количественные вопросы

Доклад состоится в рамках мемориальной мини-конференции памяти Алексея Зыкина

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


31 мая 2018

Николай Решетихин

(University of California, Berkeley)

Квазиклассический анализ квантовых интегрируемых систем и Пуассонова сигма модель

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


7 декабря 2017

Аскольд Хованский

(Университет Торонто)

Теорема Бернштейна-Кушниренко и кольцо условий комплексного тора

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


26 октября 2017

Михаил Анатольевич Цфасман

(ИППИ РАН, НМУ, CNRS)

Числа Вейля: алгебраическая геометрия, теория чисел, дзета-функции и меры

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


28 сентября 2017

Don Zagier

(Max Planck Institute for Mathematics, Germany)

Units, K-theory, and quantum invariants of knots

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


15 июня 2017

Юрий Зархин

(Penn State University)

О теореме Жордана для групп автоморфизмов алгебраических и гладких многообразий

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Классическая теорема Жордана утверждает, что все конечные подгруппы B в группе GL(n) обратимых комплексных матриц порядка n "почти абелевы" в следующем смысле: найдется абелева нормальная подгруппа A группы B с индексом [B:A], ограниченным сверху универсальной константой, зависящей только от n.

Мы обсудим аналоги теоремы Жордана (и контрпримеры к ним), в которых вместо группы матриц рассматриваются группы всех бирегулярных (или бирациональных) автоморфизмов комплексных алгебраических многообразий или группы всех диффеоморфизмов гладких вещественных многообразий.


1 июня 2017

Александр Абрамович Белавин

(ИТФ им. Л.Д. Ландау, ИППИ РАН, НМУ, МФТИ)

Компактификация на многообразия Калаби-Яу (CY) в Теории суперструн и Фробениусовы многообразия

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


25 мая 2017

Георгий Борисович Шабат

(НМУ, мехмат МГУ)

Полвека в математике

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Half-century in mathematics. I will try to give an overview of my mathematical life, starting with the tribute to my teachers. Then I will briefly mention the domains in which I worked and which have (temporarily..?) abandoned: uniformization of complex algebraic varieties, automorphism groups of bounded domain of Cn, applications of differential equations to algebraic geometry, non-archimedean discrete dynamics. Finally, I will concentrate on my current activities: dessins d'enfants theory and its relations to the moduli spaces of curves; I'll share my plans and dreams.


27 апреля 2017

Дмитрий Гуревич

(Universit'e de Valenciennes, France)

Квантования и квантовые алгебры

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


27 апреля 2017

Иван Лосев

(Northeastern University, USA)

Характеры

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


13 января 2017

Исаак Михайлович Сонин

(Department of Mathematics, UNC at Charlotte, Charlotte, NC USA, ЦЭМИ РАН, Mocква)

Теорема о декомпозиции и разделении и ее приложения

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


12 января 2017

Леонид Пастур

(ФТИ низких температур НАН Украины, Харьков)

Модели динамики и запутанности кубитов в неупорядоченном и немакроскопическом окружении

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


15 декабря 2016

V. Lucarini

(University of Reading, Reading, UK & University of Hamburg, Hamburg, Germany)

Statistical Mechanics of Climate

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


10 ноября 2016

F. Murat

(Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curie and CNRS)

Homogenization of the Neumann's brush problem

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


27 октября 2016

Антон Зорич

(Universite Paris-7)

От бильярдов в многоугольниках к динамике на пространстве модулей

В 15:30 в к.306 мат. фак-т ВШЭ, ул. Усачева 6

Анонс:
Доклад на семинаре является первой лекцией из цикла:
27.10.2016 (чт), 15:30, 306 комната, мат. фак-т ВШЭ, ул. Усачева 6 (семинар "Глобус")
01.11.2016 (вт), 15:30, 306 комната, мат. фак-т ВШЭ, ул. Усачева 6
03.11.2016 (чт), 15:30, 306 комната, мат. фак-т ВШЭ, ул. Усачева 6

Я постараюсь в трёх лекциях дать первое представление о динамике на пространстве модулей римановых поверхностей и о том, зачем она нужна. В качестве модельной задачи мы рассмотрим бильярд на плоскости с периодическими прямоугольными препятствиями (модель П. и Т. Эренфест). Несколько лет назад Делекруа, Лельевр, и Убер доказали, что диаметр типичной траектории такого бильярда растет как длина траектории в степени 2/3 (а вовсе не в степени 1/2 как диаметр траектории случайного блуждания или траектории бильярда Синая). Число 2/3 в этой истории - это показатель Ляпунова расслоения Ходжа над пространством модулей, которое скрыто за бильярдом, а сама теорема - одно из первых практических приложений в этой бурно развивающейся области. Цель лекций - дать представление о каждом из этих терминов, о связи между ними, о недавних фундаментальных результатах Концевича, Мирзахани, Мохамади, Эскина, Филипа, и рассказать о том, над какими задачами ломают головы ведущие специалисты в этой области в данный момент.

На первой лекции, начав с бильярдов в многоугольниках, мы перейдем к слоениям на плоских поверхностях, а от них - к семействам плоских поверхностей. Мы обсудим исключительно богатую геометрию таких семейств, в частности, действие группы GL(2,R) и канонический элемент объема. Мы убедимся, что поверхность с особенно плоской метрикой - это то же самое, что риманова поверхность с голоморфной 1-формой на ней. Я собираюсь закончить первую лекцию теоремой Мэйзура и Вича об эргодичности Тейхмюллерова геодезического потока, рассказав между делом, и что такое эргодичность, и что такое Тейхмюллеров геодезический поток.

Во второй лекции мы обсудим автоморфизмы поверхностей, в частности, аносовские автоморфизмы. После этого я постараюсь проиллюстрировать идею ренормализации в динамике на частном случае, пришедшем с задачи о периодическом бильярде. Чтобы формализовать идею ренормализации мы на пальцах определим расслоение Ходжа, связность Гаусса-Манина, и доберемся до формулировки мультипликативной эргодической теоремы в применении к плоским связностям.

В третьей лекции я хочу попробовать рассказать о недавних революционных теоремах жесткости Мирзахани-Мохаммади-Эскина и Филипа и дойти до переднего края науки. Я постараюсь закончить сводкой последних событий на фронте программы классификации GL(2,R)-инвариантных подмногообразий в пространстве модулей римановых поверхностей.


6 октября 2016

Вячеслав Спиридонов

(Лаборатория теоретической физики, ОИЯИ, Дубна)

Эллиптические гипергеометрические функции и их приложения

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


22 сентября 2016

Семен Гиндикин

(Rutrers University, USA)

Комплексные орисферы на вещественных симметрических пространствах

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


15 сентября 2016

И.Я. Ерухимович

(ИНЭОС РАН)

Физика образования бесконечного кластера: перколяция, слабые гели и римановы поверхности функциональных интегралов по полям

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract


4 августа 2016

Виктор Иврий

(Ун-т Торонто)

100 лет закону Вейля

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
In 1911-1912 Hermann Weyl published two papers (more followed) describing the distribution of the eigenvalues of the Dirichlet Laplacian in a bounded domain. These were among the first publications by Weyl and a new exciting field of mathematics was created. I will discuss:

    

26 мая 2016

Валерий Константинович Белошапка

(мехмат МГУ)

О простоте и сложности аналитических функций

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Оценка простоты и сложности объектов математической реальности - одна из вечных и непреходящих тем. Несмотря на большое разнообразие подходов, в различных теориях сложности  есть общие черты. В сообщении планируется рассказать о недавних результатах автора, по оценке сложности аналитических функций двух переменных. В частности, о неожиданной роли эллиптических функций в описании простых (сложности один) гармонических функций. А также о роли теоремы Вейерштрасса (теоремы о функциях с алгебраической теоремой сложения) в описании простых алгебраических функций.


19 мая 2016

Владимир Игоревич Богачёв

(МГУ, НИУ ВШЭ)

Задачи Монжа и Канторовича, пространства мер и тройки Громова

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Доклад посвящен интенсивно развивающемуся в последние два десятилетия направлению на стыке нелинейного анализа, нелинейных уравнений с частными производными, теории экстремальных задач и теории меры (а также и многих других областей). Первоначально ставится задача преобразования одной меры (или функции на многообразии) в другую с минимизацией некоторого интеграла (это и есть задачи типа Монжа и Канторовича), но затем, как это часто водится, исходная задача оставляется, поскольку возникающие при ее решения явления и другие задачи оказываются более интересными. В частности, здесь возникают интересные классы отображений многомерных и бесконечномерных пространств, являющиеся аналогами монотонных функций, кроме того, здесь приходится рассматривать пространства мер как метрические пространства и как многообразия с геодезическими. Наконец, появляются не только пространства пространств и пространства мер, но и пространства ,,пространств с мерами'' (такие пары называются тройками Громова или тройками Громова-Вершика). Обо всем этом планируется рассказать в доступном для студентов начальных курсов стиле.


28 апреля 2016

Пьер Картье / Pierre CARTIER

(Institut des Hautes Etudes Scientifiques, Paris, France)

What is a cosmic Galois group ?

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
I shall report on a new research project, centered about a tentative new symmetry group in physics, commuting to the Poincare group, as well as to the so-called gauge groups. This group should govern the fundamental numerical constants occurring in the so-called standard model of high energy physics; like the ratios of the fundamental particles (electron, quarks, ...). The mathematical theory rests on new developments in arithmetic algebraic geometry (motives, periods, motivic Galois group)


21 апреля 2016

Константин Юрьевич Федоровский

(МГТУ им. Баумана)

Задачи аппроксимации для полианалитических функций

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Доклад будет посвящен задачам о приближаемости функций полианалитическими рациональными функциями и многочленами (т.е. функциями/многочленами вида \overline{z}^nf_n(z)+...+\overline{z}f_1(z)+f_0, где f_0,f_1,...,f_n --- рациональные функции/многочлены комплексного переменного, а n --- натуральное число) в нормах пространств непрерывных и гладких функций на компактных подмножествах комплексной плоскости. Эти задачи возникли в конце 1970-х в контексте аппроксимации функций т.н. рациональными модулями, а с середины 1990-х они активно изучаются в связи с тематикой аппроксимации функций решениями общих эллиптических уравнений. В докладе планируется обсудить историю вопроса и некоторые недавно полученные результаты.   


14 апреля 2016

Семён Бенсионович Шлосман

(ИППИ РАН; Centre de Physique Theorique, CNRS)

Модель Изинга и диффузия Эйри

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Я буду рассказывать про модель Изинга -- простейшую нетривиальную модель статистической механики. Оказывается, что некоторые тонкие явления современной математической физики можно наблюдать и в модели Изинга, если знать, куда смотреть.

Основным примером будет величина флуктуаций больших капель одной фазы внутри другой. Обычно у объекта (линейного) размера N наблюдаются (гауссовские) фуктуации порядка N^{1/2}. Однако, флуктуации спектра случайных матриц размера N имеют меньший порядок N^{1/3}. Я расскажу, какие величины в модели Изинга тоже имеют флуктуации этого порядка. А именно, так себя ведут линии уровня капли вблизи её ?ребра?. Если эти линии нормировать на N^{1/3}, то при больших N получается диффузия Эйри.

Рассказ основан на совместной работе с Димой Иоффе и Иваном Велеником.


24 марта 2016

Сергей Олегович Горчинский

(Математический институт им.В.А.Стеклова РАН, НИУ ВШЭ)

Многомерный символ Конту-Каррера

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Доклад основан на совместной работе с Д.В. Осиповым. Символом Конту-Каррера в размерности n называется один способ построить обратимый элемент из произвольного коммутативного кольца A при помощи n+1 рядов Лорана от n переменных с коэффициентами из A. Данный символ возникает при рассмотрении n-мерных алгебраических многообразий и полных флагов на них, т.е. неуплотняемых последовательностей неприводимых подмногообразий. Многомерный символ Конту-Каррера удовлетворяет фундаментальному свойству --- для него выполняется так называемый закон взаимности. Все это будет подробно обсуждаться в докладе, а в начале будут рассмотрены простейшие классические примеры.


18 февраля 2016

Юлий Сергеевич Ильяшенко

(НМУ, МГУ, ВШЭ, Корнелльский университет)

Навстречу глобальной теории бифуркаций на плоскости

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
В докладе намечается новая перспектива глобальной теории бифуркаций на плоскости. Теория бифуркаций на плоскости состоит из трех частей: локальной, нелокальной и глобальной. Сейчас стало ясно, что последнюю часть еще предстоит создать.

Теория локальных бифуркаций (мы говорим только о бифуркациях на плоскости) изучает перестройки фазовых портретов вблизи особых точек. Эта теория почти полностью закончена, хотя недавно возникли новые открытые проблемы. Нелокальная теория связана с бифуркациями сепаратрисных многоугольников (полициклов). Хотя за последние 30 лет в ней получено много новых результатов, она еще далека от завершения.

Недавно обнаружилось, что нелокальная теория содержит еще одну существенную часть: глобальные бифуркации. Новые эффекты в этой теории возникают из-за появления так называемых мелькающих сепаратрисных связок. Цель доклада - обрисовать контуры новой теории и сформулировать многочисленные открытые проблемы. Основные новые результаты - существование открытого множества структурно неустойчивых семейств векторных полей на плоскости, а также семейств, имеющих функциональный инвариант (совместные результаты с Кудряшовым и Щуровым). Тридцать лет назад Арнольд сформулировал шесть гипотез, которые намечали будущее развитие глобальной теории бифуркаций. Сейчас все шесть гипотез опровергнуты. Хотя теория и развивается в совершенно ином направлении, ее развитие мотивировано гипотезами Арнольда.   


17 декабря 2015

Ryoki Fukushima

(RIMS, Kyoto University)

Eigenvalue Fluctuations for Lattice Anderson Hamiltonians

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
In this talk, we will discuss a homogenization problem for the Schredinger operator with a random potential: the so-called Anderson Hamiltonian. This type of problem has been well-studied in a similar but more singular setting called "the crushed ice problem", that is, the Laplacian in a randomly perforated domain. Kac and Rauch-Taylor established the convergence (homogenization) of eigenvalues in a certain limiting regime. Later Figari-Orlandi-Teta and Ozawa found a Gaussian fluctuation of the eigenvalues around the limits in the three dimensional case. The proof of homogenization is based on the analysis of the Wiener sausage whereas the fluctuation result is proved by a rather heavy perturbation method.

We propose a probabilistic approach to the fluctuation result based on a martingale central limit theorem. It is carried out in a slightly different setting where the Laplacian is perturbed by a random potential, yielding a central limit theorem in general dimensions. Our results partially extend a previous work by Bal, based on the perturbation method, which covers the dimensions less than or equal to three.

Based on a joint work with Marek Biskup and Wolfgang K?nig.

Доклад будет прочитан на английском языке.


26 ноября 2015

Анатолий Моисеевич Вершик

(ПОМИ, СПбГУ, ИППИ)

Многообразные поиски границ

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Интегральные представления различных объектов анализа, описание инвариантных мер, спектральные разложения, и разложения представлений, эргодические ансамбли, предельные поведения случайных блужданий --- всё это различные проявления очень общей деятельности, которую можно почти поэтически назвать поиском границ. В математике имеется огромное число понятий границ, внешне совершенно непохожих: что общего у перечня концов группы и перечня эргодических мер?

Наряду с большим количеством конкретных результатов последних лет, описывающих границы в задачах теории случайных процессов, теории представлений, комбинаторики, теории графов, появилось желание посмотреть на этот процесс с общей точки зрения. Эту точку зрения дает сочетание теории индуктивных пределов (диаграмм Браттели) и теории фильтраций (убывающих последовательностей подалгебр).

Сравнительно новый вопрос в этой области - всегда ли возможно найти границу? Нет ли задач, в которых она принципиально не описывается? И что же тогда делать? Оказывается, в ряде задач о границах есть некоторая иерархия, которая дает частичный ответ на поставленный вопрос. Развитие этой темы интенсивно происходит в настоящее время.


24 сентября 2015

Mauro Mariani

(Sapienza Universit? di Roma)

Macroscopic fluctuation theory

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
In the last fifteen years different tools have been developed to extend thermodynamic formalism out of the scope of equilibrium statistical mechanics. Following seminal ideas from A. Einstein, some coherent theory emerged to give a rigorous mathematical treatment of 'non-equilibrium stationary states'. I will briefly review this approach, sometimes called 'Macroscopic fluctuation theory'. I will discuss some random dynamics (e.g. exclusion processes and weakly coupled systems) that fit into this framework, with emphasis on critical behaviors that may appear as a mark of dynamical phase transitions.

Доклад будет прочитан на английском языке.


4 июня 2015

Kevin Ford

(University of Illinois at Urbana-Champaign)

Do the primes play dice?

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
The sequence of prime numbers have fascinated mathematicians since antiquity, largely due to the apparent irregularity in their distribution.  However, regularities and patterns appear if the primes are viewed statistically.   We will discuss how ideas from probability theory can be used to study prime numbers, with an emphasis on gaps between  consecutive prime numbers.   In particular, we will discuss recent breakthroughs concerning small and large gaps between prime numbers.

Доклад будет прочитан на английском языке.


28 мая 2015

Pascal Hubert

(Institut de Mathematiques de Marseille)

Diffusion in periodic billiards and for Novikov's problem

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
I will describe the behavior of chaotic trajectories in Novikov's problem (joint work with A. Avila and A. Skripchenko) in a very special situation first studied by Dynnikov. I will explain how to define a natural measure on the set of chaotic directions in Novikov's problem. This set is a fractal set of zero measure, thus this is a non trivial problem. Using some results on Lyapunov exponents and following some ideas from Zorich and Forni, I will describe the asymptotic behavior of a generic chaotic trajectory. I will also give some results on the ergodic properties of the associated foliations.

Доклад будет прочитан на английском языке.


30 апреля 2015

Kenneth C. Millett

(University of California, Santa Barbara, CA, USA)

Knotting and Linking in Fluid Flow

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Vortex lines in a fluid flow are modeled by systems of mathematical curves that are entangled through their knotting or linking, both local and global. Their mutual interference is implicated in large-scale effects making their characterization and quantification an objective of substantial interest. In this study, two mathematical streams are brought together. First, the knotting of open chains used to characterize knotting in, for example, proteins (Linear random knots and their scaling, Macromolecules, (38) 2005, no. 2, 601- 606; Conservation of complex knotting and slipknotting patterns in proteins, Proceedings of the National Academy of Science, USA, vol 109, no 26, 2012, E1715-E1723; KnotProt: a database of proteins with knots and slipknots, Nucleac Acids Research, (2014) 1, doi: 10.1093/nar/gku1059.) Second, the periodic linking measures used to study entanglement in periodic boundary condition (PBC) models of polymer melts (A study of entanglement in systems with periodic boundary conditions, Progress in Theoretical Physics Supplement, No 191, 2011, 172-181; Quantifying entanglement for collections of chains in models with periodic boundary conditions, Procedia IUTAM: Topological Fluid Dynamics, (2013) 7, 251 - 260).

The first derives from the application of knot polynomial invariants (A polynomial invariant of oriented links, Topology (26) 1987, 107-141). We will describe the fundamental features of knotting and the extension of these ideas that has lead us to our study of knotting in open filament structures such as proteins or fluid flow lines. The second is inspired by the Gauss linking number and is related to the helicity (Helicity and the Calugareanu Invariant, Proc. R. Soc. Lond. A vol. 439, 1992, 411-429 ). We will describe the extension of these to the context of periodic boundary condition models and the creationg, by Panagiotou, of the periodic linking number. Its analysis provides the foundation upon one can determine an associated linking matrix and calculate measures of entanglement as a function of the scale of the vortex filaments and the consequences of confinement or global forces.

Доклад будет прочитан на английском языке и будет проходить в рамках конференции "Knots and Links in Fluid Flows: from helicity to knot energies"


16 апреля 2015

Philippe Lebacque

(Universit de Franche-Comt & INRIA)

Asymptotic properties of global fields

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Our talk deals with the behaviour of arithmetic data (class number, number of places of given degree) in families of global fields. During the first part of our talk, we will motivate this study with questions related to sphere packings and coding theory. After that, we will recall the classical Brauer--Siegel theorem that precisely describes the behaviour of the product of the class number by the regulator in families, and then give some generalizations and applications. For this purpose, we will introduce Tsfasman--Vladuts invariants of infinite global fields.

In the second part of our talk, we will first explain Schmidt's $K(\pi,1)$ property and make use of it in order to construct nice families of global fields. Then, if time permits, we will give another related context where this property plays a major role. Finally, we will raise some open questions and explain why they are interesting and difficult.

Доклад будет прочитан на английском языке.


19 февраля 2015

Илья Коссовский

(Венский университет)

О локальной задаче Пуанкаре

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
В 1907 году Пуанкаре сформулировал так называемую "локальную задачу" в многомерном комплексном анализе, заключающуюся в нахождении всех голоморфных отображений между ростками вещественно-аналитических гиперповерхностей в двумерном комплексном пространстве. Эта задача имеет важные приложения в многомерном комплексном анализе, т.к. изучение пространств отображений между областями в многомерном комплексном пространстве сводится к изучению ростков отображений между их границами. Также эта задача тесно связана с теорией эквивалентности распределений (или G-структур). Эта задача естественным образом распадается на задачу о голоморфной эквивалентности двух заданных ростков, и задачу об описании голоморфных симметрий фиксированного ростка. Пуанкаре сделал существенный прогресс в изучении локальной задачи, показав, в случае Леви невырожденных ростков, что два ростка общего положения не эквивалентны, и доказав, что размерность группы симметрий ростка не превосходит 8. Более детальные результаты в Леви невырожденном случае были получены в дальнейших работах Картана, Танаки, Черна и Мозера, и Белошапки. Однако для ростков с Леви вырождениями вопрос Пуанкаре о возможных группах автоморфизмов остался открытым. В случае конечного типа (то есть когда вещественная гиперповерхность не содержит ростков комплексных кривых) задача была решена независимо Белошапкой, Ежовым и Коларом. Было показано, что размерность группы не превосходит 4 в этом случае. Тем не менее, техника Белошапки-Ежова-Колара (метод модельной поверхности) не может быть распостранена на наиболее деликатный случай бесконечного типа (а именно, когда вещественная поверхность содержит росток комплексной кривой), и вопрос о возможных структурах групп долгое время был открытым в этом случае. В нашей совместной работе с Шафиковым мы разработали подход к решению этой задачи на основе связей между вещественным гиперповерхностями и комплексными дифференциальными уравнениями второго порядка. Случаю бесконечного типа соответствуют уравнения с изолированной особенностью. На основе изучения симметрий подходящего класса сингулярных дифференциальных уравнений, нам удалось классифицировать возможные группы автоморфизмов вещественных гиперповерхностей. Оказывается, что имеет место следующая лакуна для размерности: бесконечность, 8, 5, 4, 3, 2, 1, 0 (эта лакуна составляет содержание так называемой Гипотезы Белошапки). Также нами полностью классифицированы случаи размерности 4 и выше.


25 декабря 2014

Андрей Юрьевич Окуньков

(ИППИ РАН, ВШЭ и Columbia University)

Загадки симплектической двойственности

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Начиная по крайней мере с работы Зайберга и Интриллигатора 1996 года, в многочисленных работах физиков и математиков обсуждаются свойства некоторых дуальных пар алгебраических симплектических многообразий. Каноническим примером такой пары являются кокасательные пространства многообразий флагов двух групп двойственных по Ленглендсу. Не претендуя на исчерпывающие понимание этого феномена, в своем докладе я бы хотел обсудить ключевые примеры таких пар, потенциальные механизмы возникновения двойственности, и что симплектическая двойственность означает для исчислительной геометрии.


18 декабря 2014

Михаил Боровой

(Тель-Авивский университет)

Пометки диаграмм Дынкина и когомологии Галуа односвязных вещественных групп

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Пометкой (labeling) конечного графа D называется набор числовых меток a_i, равных 0 или 1, где i пробегает множество вершин графа D. Мы говорим, что вершины i и j - соседние, если они соединены ребром. Мы определяем элементарное преобразование T_i множества пометок графа следующим образом: T_i не меняет a_j для вершин j отличных от i, а к числовой метке a_i оно прибавляет (по модулю 2) сумму меток a_k по всем вершинам k соседним с i. Мы говорим, что две пометки графа D эквивалентны, если от одной из них можно перейти к другой посредством цепочки элементарных преобразований. На первом часу доклада я собираюсь описать классы эквивалентности пометок для важного класса графов: для диаграмм Дынкина.

На втором часу я расскажу про задачу вычисления множества когомологий Галуа H^1(R,G) односвязной простой вещественной алгебраической группы G. Количество элементов этого конечного множества с отмеченной точкой вычислил Джеффри Адамс в препринте 2013 года, опираясь на результаты докладчика 1988 года. Для некоторых приложений недостаточно знать только количество элементов. Оказывается, что если G - компактная, односвязная, простая алгебраическая группа над полем R вещественных чисел, то множество ее когомологий Галуа H^1(R,G) - это в точности множество классов эквивалентности пометок диаграммы Дынкина D группы G. Таким образом, используя пометки диаграмм Дынкина, мы даем явное функториальное описание множества с отмеченной точкой H^1(R,G).

Когомологии Галуа естественно появляются в задаче классификации тензоров данного типа над R (например, пар квадратичных форм) с точностью до замены координат. Множество вещественных тензоров, эквивалентных над полем комплексных чисел данному тензору t, разбивается на конечное число классов эквивалентности над R, и эти классы эквивалентности соответствуют элементам ядра отображения

                   H^1(R, H) ---> H^1(R, G),

где H - некоторая R-подгруппа некоторой R-группы G. Если G и H - односвязные группы, мы можем вычислить это ядро, используя пометки диаграмм Дынкина.

Это совместная работа с Цахи Эвенором (Zachi Evenor). От слушателей не предполагается никаких предварительных знаний об алгебраических группах и когомологиях Галуа.


4 декабря 2014

Harald Helfgott

(Paris)

The ternary Goldbach conjecture

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
The ternary Goldbach conjecture (1742) asserts that every odd number greater than 5 can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant C satisfies the conjecture. In the years since then, there has been a succession of results reducing C, but only to levels much too high for a verification by computer up to C to be possible (C>10^1300). (Works by Ramare and Tao solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas of the proof. Доклад пройдёт в рамках конференции "Zeta Functions 5".


2 сентября 2014 (ВТОРНИК!)

Юрий Иванович Манин

(Max-Planck-Institut fur Mathematik, Bonn)

Большой Взрыв и Космологическое Время: алгебро-геометрические модели

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Мы вводим алгебро-геометрические модели, описывающие прошлые и будущие границы пространства-времени и динамику Большого Взрыва, стохастического поведения вблизи него ("Mixmaster Universe"), и перехода между последовательными "эонами" в стиле Р. Пенроуза.

Доклад основан на совместной работе с М. Марколли.


14 августа 2014

Борис Анатольевич Дубровин

(МИАН; SISSA, г. Триест)

Фазовые переходы в решениях нелинейных уравнений в частных производных и в случайных матрицах

В 15:40 в конф-зале (к.401) НМУ, Б. Власьевский, 11

Аbstract:
Доклад будет посвящен изучению свойств решений нелинейных эволюционных уравнений в частных производных с медленно меняющимися начальными условиями. В решениях таких уравнений наблюдаются различные типы фазовых переходов; в точках фазовых переходов качественный тип поведения решений меняется. В частности, в решениях гамильтоновых уравнений в частных производных возникают зоны быстрых осцилляций. Будет сформулирована гипотеза универсальности об асимптотическом описании решений в точках фазовых переходов. Будут объяснены мотивировки гипотезы универсальности и сформулированы строгие результаты. Особое внимание будет уделено нелинейным уравнениям в частных производных, возникающим в теории случайных матриц.


Rambler's Top100